Часть полного текста документа:*-Алгебры и их применение Дипломная работа специалиста Таврический национальный университет им. В.И. Вернадского Симферополь 2003 Введение Пусть Н - гильбертово пространство, L(Н) - множество непрерывных линейных операторов в Н. Рассмотрим подмножество А в L(Н), сохраняющееся при сложении, умножении, умножении на скаляры и сопряжении. Тогда А - операторная *-алгебра. Если дана абстрактная *-алгебра А, то одна из основных задач теории линейных представлений (*-гомоморфизмов А в L(Н)) - перечислить все ее неприводимые представления (с точностью до эквивалентности). Теория унитарных представлений групп восходит к XIX веку и связана с именами Г.Фробениуса, И.Шура, В.Бернсайда, Ф.Э. Молина и др. В связи с предложениями к квантовой физике теория унитарных представлений топологических групп, групп Ли, С*-алгебр была разработана И.М.Гельфандом, М.А. Наймарком, И.Сигалом, Ж.Диксмье, А.А. Кирилловым и др. в 60-70-х годах XX века. В дальнейшем интенсивно развивается теория представлений *-алгебр, заданных образующими и соотношениями. Дипломная работа посвящена развитию теории представлений (конечномерных и бесконечномерных) *-алгебр, порожденных двумя проекторами. Глава I в краткой форме содержит необходимые для дальнейшего сведения из теории представлений и функционального анализа. В §1 дано определение *-алгебры и приведены простейшие свойства этих алгебр. В §2 излагаются основные свойства представлений, вводятся следующие понятия: неприводимость, эквивалентность, прямая сумма, интегрирование и дезинтегрирование представлений. В §3 определяются тензорные произведения пространств, тензорные произведения операторов и др. (см. [2], [3], [4], [8], [9]) В Главе II изучаются представления *-алгебры P2 P2 = С < p1, p2 | p12 = p1* = p1, p22 = p2* = p2 >, порожденной двумя самосопряженными идемпотентами, то есть проекторами (см., например, [12]). Найдены все неприводимые *-представления *-алгебры P2, с точностью до эквивалентности., доказаны соответствующие спектральные теоремы. В §1 рассматриваются только конечномерные *-представления ? в унитарном пространстве Н. Описаны все неприводимые и неэквивалентные *-представления *-алгебры P2 . Неприводимые *-представления P2 одномерны и двумерны: 4 одномерных: ?0,0(p1) = 0, ?0,0(p2) = 0; ?0,1(p1) = 0, ?0,1(p2) = 1; ?1,0(p1) = 1, ?1,0(p2) = 0; ?1,1(p1) = 1, ?1,1(p2) = 1. И двумерные: , ? (0, 1). Доказана спектральная теорема о разложении пространства Н в ортогональную сумму инвариантных относительно ? подпространств Н, а также получено разложение ? на неприводимые *-представления. Результаты §1 относятся к математическому фольклору. В §2 получены основные результаты работы. Для пары проекторов в сепарабельном гильбертовом пространстве Н приведено описание всех неприводимых представлений, доказана спектральная теорема. В Главе III спектральная теорема для пары проекторов Р1, Р2, применяется к изучению сумм Р1+Р2, аР1+bР2 (0 < a < b). Получены необходимое и достаточное условие на самосопряженный оператор А для того чтобы А = Р1+Р2 или А = аР1+bР2, 0 < a < b, (этот частный случай задачи Г.Вейля (1912 г.) о спектре суммы пары самосопряженных операторов). Глава I. Основные понятия и определения § 1. - алгебры Определение - алгебры. Определение 1.1. ............ |