Часть полного текста документа:Алгебра Дж. Буля и ее применение в теории и практике информатики Информация, с которой имеют дело различного рода автоматизированные информационные системы, обычно называется данными., а сами такие системы - автоматизированными системами обработки данных (АСОД). Различают исходные (входные), промежуточные и выходные данные. Данные разбиваются на отдельные составляющие, называемые элементарными данными или элементами данных. Употребляются элементы данных различных типов. Тип данных (элементарных) зависит от значений, которые эти данные могут принимать. В современной безбумажной информатике среди различных типов элементарных данных наиболее употребительными являются целые и вещественные числа, слова (в некотором подалфавите байтового алфавита) и так называемые булевы величины. Первые два типа величин нуждаются в пояснении только в связи с конкретными особенностями их представления в современных ЭВМ. Прежде всего различают двоичное и двоично-десятичное представления чисел. В двоичном представлении используется двоичная система счисления с фиксированным числом двоичных разрядов (чаще всего 32 или, для малых ЭВМ, 16 разрядов, включая разряд для представления знака числа). Если нулем обозначать плюс, а единицей - минус, то 00001010 означает целое число +(23+2l)= + l0, а 10001100- число- (23 + 22) = -12 (для простоты взято 8-разрядное представление). Заметим, что знак числа в машинном представлении часто оказывается удобным ставить не в начале, а в конце числа. В случае вещественных чисел (а фактически, с учетом ограниченной разрядности, дробных двоичных чисел) употребляются две формы представления: с фиксированной и с плавающей запятой. В первом случае просто заранее уславливаются о месте нахождения занятой, не указывая ее фактически в коде числа. Например, если условиться, что запятая стоит между 3-м и 4-м разрядами справа, то код 00001010 будет означать число 00001,010= (1 + 0 • 2-1 + 1 • 2-2 + 0 • 2-3) = 1,25. Во втором случае код числа разбивается на два кода в соответствии с представлением числа в виде х = а • 2b. При этом число а (со знаком) называется мантиссой, а число b (со знаком) - характеристикой числа х. О положении кода характеристики и мантиссы (вместе с их знаками) в общем коде числа также устанавливаются заранее. Для экономии числа разрядов в характеристике b ее часто представляют в виде b = 2kb1, где k - фиксированная константа (обычно k =2). Вводя еще одну константу m и полагая b = 2kb2 - m, можно избежать также использования в коде характеристики знака (при малых b2 > 0 число b отрицательно, а при больших - положительно). В двоично-десятичном представлении обычные десятичные цифры (а также запятая и знак) кодируются двоичными цифрами. При этом для экономии места часто используется так называемый упакованный код, когда с помощью одного байта кодируется не одна, а две десятичные цифры. Подобное представление позволяет в принципе кодировать числа любой значности. На практике обычно все же ограничивают эту значность, хотя и столь большими пределами, что можно считать их неограниченными. Тип данных "произвольное слово во входном алфавите" не нуждается в специальных пояснениях. Единственное условие - необходимость различать границы отдельных слов. Это достигается использованием специальных ограничителей и указателей длины слов. Тип булева переменная присваивается элементарным данным, способным принимать лишь два значения: "истина" (и) и "ложь" (л). ............ |