MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Анализ дифференциальных уравнений

Название:Анализ дифференциальных уравнений
Просмотров:110
Раздел:Математика
Ссылка:Скачать(198 KB)
Описание: Лекция: Анализ дифференциальных уравнений Содержание 1. Основные понятия 2. Задачи, приводящие к дифференциальным уравнениям 2.1 Равноускоренное движение 2.2 Геометрические

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Лекция: Анализ дифференциальных уравнений


Содержание

1. Основные понятия

2. Задачи, приводящие к дифференциальным уравнениям

2.1 Равноускоренное движение

2.2 Геометрические задачи

3. Дифференциальные уравнения первого порядка

3.1 Уравнения с разделяющимися переменными


1. Основные понятия

 

Дифференциальным уравнением называется уравнение, содержащее независимую переменную х, неизвестную функцию y=y (x) и ее производные y’, y’’,.y (n) F (x, y, y', y’’,.y (n)) = 0.

Порядком дифференциального уравнения называется наивысший порядок входящей в него производной.

Решением дифференциального уравнения называется всякая функция y=y (x), которая при подстановке в уравнение обращает его в тождество.

Например, уравнение y’’=y’ представляет собой дифференциальное уравнение второго порядка, а функции y (x) = C1ex + C2 являются его решениями при любых постоянных C1 и C2.

Процедура поиска решения дифференциального уравнения называется его интегрированием, а графики его решений - интегральными кривыми.

Всякое дифференциальное уравнение порядка n имеет бесчисленное множество решений. Все эти решения определяются функцией, содержащей n произвольных постоянных y =φ (x,C1,C2.Cn). Эта совокупность решений называется общим решением дифференциального уравнения. Частным решением дифференциального уравнения называется всякая функция этого семейства, отвечающая конкретному набору постоянных C1,C2.Cn.

Геометрически общее решение дифференциального уравнения представляет собой семейство интегральных кривых плоскости XOY, а частное решение - конкретную кривую этого семейства. Например, непосредственным дифференцированием легко проверить, что общим решением дифференциального уравнения y¢y x =0 является функция y = . То есть, общее решение уравнения - это семейство окружностей x 2 + y2 = C2, а

Начальными условиями для дифференциального уравнения порядка n называется набор значений функции y (x) и ее производных порядка n-1 включительно y¢ (x), y¢ (x),.y (n1) (x) в некоторой точке x0.

Задачей Коши называется задача об отыскании решения дифференциального уравнения F (x, y, y¢, y¢,.y (n)) =0, удовлетворяющего заданным начальным условиям:

y (x0) = y0, y’ (x0) = y1, y’’ (x0) =y2,.y (n-1) (x0) =yn-1 .

Геометрически это означает, что в общем решении уравнения

y =j (x,C1,C2.Cn) необходимо так подобрать константы C1,C2.Cn, чтобы соответствующая им интегральная кривая проходила через точку плоскости (x0, y0) и в этой точке имела заданные значения всех своих производных до порядка n-1. Например, решением задачи Коши y¢y x =0, y (0) =2 является окружность x 2 + y2 = 4. Чтобы получить это решение необходимо в общее решение уравнения x 2 + y2 = C2 подставить заданные начальные условия x=0 и у=2 и из него найти требуемое значение постоянной C=2.

Приведем без доказательства одну из основополагающих теорем теории ДУ.

Теорема 1. (существования и единственности решения задачи Коши)

Если функция F (x, y, y¢, y¢,.y (n)) непрерывно дифференцируема в некоторой области, содержащей точку (x0, y0), то в этой области существует и притом единственно решение дифференциального уравнения F (x, y, y¢, y¢,.y (n)) = 0, удовлетворяющее заданным начальным условиям:

 

y (x0) = y0, y’ (x0) = y1, y’’ (x0) =y2,.y (n-1) (x0) =yn-1 .


2. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Отыскание корня уравнения методом половинного деления
Просмотров:72
Описание: Содержание   1. Индивидуальное задание 2. Постановка задачи и формализация 3. Выбор, обоснование, краткое описание методов 3.1 Численное интегрирование 3.1.1 Постановка задачи 3.1.2 Выбор и описание метода

Название:Методика формирования умений решать тригонометрические уравнения и неравенства в курсе алгебры и начал анализа
Просмотров:226
Описание: Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Поморский государственный университет имени М.В.Ломоносова»   Кафедра мето

Название:Интегрированный урок математики, русского языка, окружающего мира "Корень (уравнения, слова, растения)"
Просмотров:101
Описание: Конспект интегрированного урока математики, русского языка, окружающего мира «Корень (уравнения, слова, растения)» Цель урока: обобщить представления детей о понятии корень, используемом в таких предметных

Название:Использование разнообразных форм уроков при изучении темы "Квадратные уравнения" в 8 классе
Просмотров:82
Описание: ГОУ СПО "Кунгурское педагогическое училище" ПЦК преподавателей естественно-математических дисциплин Выпускная квалификационная работа по методике математики Использование разнообра

Название:Численное решение уравнения Шредингера средствами Java
Просмотров:141
Описание: Численное решение уравнения Шредингера средствами Java Содержание Введение 1. Уравнение Шредингера и физический смысл его решений 1.1 Волновое уравнение Шредингера 1.2 Волновые

 
     

Вечно с вами © MaterStudiorum.ru