MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Аналіз теорії цифрових автоматів

Название:Аналіз теорії цифрових автоматів
Просмотров:76
Раздел:Информатика, программирование
Ссылка:Скачать(85 KB)
Описание: Аналіз теорії цифрових автоматів (курсова робота) Содержание Двійкова арифметика Системи числення з довільною основою Мішані системи числення Форма з фіксованою крапкою Фо

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Аналіз теорії цифрових автоматів

(курсова робота)


Содержание

Двійкова арифметика

Системи числення з довільною основою

Мішані системи числення

Форма з фіксованою крапкою

Форма з плаваючою крапкою

Прямий, зворотній та доповнюючий коди чисел

Поняття про булеві функції

Аналітичне представлення булевих функцій

Мінімізація булевих функцій

Метод квайна-мак-класкі

Висновок

Висновок

Література


Теорія цифрових автоматів закладає теоретичні основи роботи комп’ютерної техніки. У даній курсові роботі проводиться аналіз математичного підгрунтя даної дисципліни.

Двійкова система числення

Двійкова позиційна система числення

Позиційна система числення з основою 2 називається двійковою. Для запису чисел в двійковій системі використовуються лише дві цифри: 0 і 1. Число два, тобто основа системи подається як 102.

Зручність системи - в її надзвичайній простоті.

Недолік - основа системи мала, тому для запису навіть не дуже великих чисел треба використовувати багато знаків.

Переведення числа з двійкової системи числення в десяткову та з десяткової у двійкову.

Нам уже відомо, що число N, записане в системі числення з основою p як (±akak-1…a1a0) p, рівне N=ak∙pk+ak-1∙pk-1+…+a1∙p+a0

Тому:

10012=1∙23+0∙22+0∙21+1∙20=8+0+0+1=910

1000012=1∙25+0∙24+0∙23+0∙22+0∙21+1∙20=32+0+0+0+0+1=3310

Щоб перевести число із десяткової системи числення у двійкову, треба послідовно ділити десяткове число і його десяткові частки на основу двійкової системи, тобто на число 2. Ділення продовжується до тих пір, поки одержана частка не буде менша основи нової системи числення, тобто 2.


    1 |40|2_

         0 |20|2_

             0 |10|2

                   0|5|2

                      1|2|2

                         0|1

Отже число 8110 в двійковій системі: 10100012

Переведемо число 100:

100|2_

    0 |50|2_

         0 |25|2_

             1 |12|2

                   0|6|2

                      1|3|2

                         1|1

Отже, (100) 10= (1100100) 2

З переводом чисел з десяткової системи одиниць у двійкову приходиться постійно мати справу при роботі на ЕОМ.

Окрему позицію в записі числа називають розрядом. Число розрядів - розрядність (довжина). Номер позиції - номер розряду. Довжина числа - це к-сть позцій (розрядів) в записі числа. В технічному розумінні це довжина розрядної сітки.

Чим менша основа системи, тим більша довжина числа. Якщо довжина розрядної сітки n, то: Aq max=qn-1; Aq min= - (qn-1);

Діапазон представлення чисел в заданій системі:

Aq max ≥ДП≥ Aq min.


Двійкова арифметика

Арифметичні дії в двійковій системі (двійковій арифметиці) виконуються за звичайними для позиційних систем правилами (алгоритмами), які нам відомі з десяткової арифметики, але при цьому, звичайно, використовуються таблиці додавання і множення двійкової системи.

Таблиця додавання

0+0=0

0+1=1

1+0=1

1+1=102

(додавання нуля не міняє числа, а один плюс один буде два).

Таблиця множення

0∙0=0

0∙1=0

1∙0=0

1∙1=1

(число, помножене на нуль, є нуль; множення на один не міняє числа).

Додавання. Додавання багатозначних чисел відбувається так само, як і в десятковій системі, тобто порозрядно, починаючи з молодшого.

1011012 - 1 доданок

+ 101002 - 2 доданок

10000012 - сума

Перевіримо правильність наших обчислень:


1011012=1∙25+0∙24+1∙23+1∙22+0∙21+1∙20=32+0+8+4+0+1=4510

101002=1∙24+0∙23+1∙22+0∙21+0∙20=16+0+4+0+0=2010

4510+2010=6510

10000012=1∙26+0∙25+0∙24+0∙23+0∙22+0∙21+1∙20=64+0+0+0+0+0+1=6510

Віднімання

0-0=0

1-0=1

1-1=0

102-1=1

Знайдемо: 1110101112-11000012

          1110101112

            - 11000012

           1011101102


    
    
    


    

4


    

    
       Крапки, поставлені над деякими розрядами, показують, що в двійковій системі одиниця відміченого розряду роздроблюється на дві одиниці вищого розряду.

Множення

111012∙11012

111012 - множник

11012 - множник

11101 - множене

+11101 - множене, зсунуте на 2 розряди вліво

11101 - множене, зсунуте на 3 розряди вліво

1011110012 - добуток


Перевірка:

111012=1∙24+1∙23+1∙22+0∙21+1∙20=16+8+4+1=2910

11012=1310; 29∙13=37710

1011110012=1∙28+0∙27+1∙26+1∙25+1∙24+1∙23+0∙22+0∙21+1∙20=256+0+64+32+16+8++0+1=37710.

 

Отже, в двійковій арифметиці при множенні не потрібна таблиця множення. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  
 
     

Вечно с вами © MaterStudiorum.ru