Часть полного текста документа:Аспекты использования газообразных сорбированных углеводородов в эколого-гидрогеологическом мониторинге К.Е.Питьева, Московский государственный университет Введение Одна из существенных задач эколого-гидрогеологического мониторинга - выявление универсального индикатора очагов техногенного воздействия на природные среды. Для районов нефтегазовых месторождений в качестве индикаторов техногенных нагрузок на природные среды нами исследуются газообразные сорбированные углеводороды и "прочие" газы. Впервые предложено использовать наряду с сорбированными газами пород также и сорбированные углеводородные газы водных сред - подземных, поверхностных вод, стоков. Выбор сорбированных углеводородных газов обусловлен: меньшей, по сравнению с другими компонентами, трудоемкостью их анализа (используется метод хроматографии); экономичностью транспортировки проб (водные пробы транспортируются в виде сухих остатков); геохимической инертностью, определяющей сохранность техногенного состава проб. Закономерности распространения сорбированных углеводородных газов изучены для пород и не исследованы для водных сред. Углеводородные газы непосредственно в водных средах сорбируются коллоидами (гидроокислами железа, алюминия и нефтяных компонентов), углистыми веществами, битумами. При получении сухого остатка дополнительно происходит сорбция растворенных в воде углеводородов минеральными твердыми соединениями. Температурные условия выпаривания (+800С) обеспечивают сохранность сорбированных углеводородов в сухом остатке, что позволяет использовать при экологогидрогеологическом мониторинге сорбированную форму углеводородных газов, приуроченную к литосфере, гидросфере, техносфере. Наличие адсорбированных углеводородов в водных средах обусловлено физической сорбцией посредством сил межмолекулярного взаимодействия, при котором происходит компенсация сорбируемыми углеводородными молекулами свободных связей заряда сорбента, обладающего значительными поглощающими свойствами. Механизм процесса физической сорбции по модели Ван-дер-Вальса объясняется ориентационным, индукционным и дисперсионным эффектами, которые приводят неполярные молекулы углеводородов (их дипольный момент равен нулю) к поляризации. Последняя обеспечивает притяжение молекул углеводородов к поверхностному слою породы, коллоидов, сухого остатка. При ориентационном эффекте поляризация молекулы углеводорода возникает в результате несовпадения центров тяжести положительных и отрицательных зарядов, и молекулы, в случае близости друг к другу разноименных зарядов, притягиваются, а одноименных - отталкиваются. Молекулы обладают вращательными степенями свободы. При их вращении диполи удерживаются в параллельных положениях с ориентацией на минимальную потенциальную энергию, достаточную для притяжения молекулы к сорбенту. Индукционный эффект силы притяжения заключается в поляризации молекулы углеводорода, индуцируемой другим заряженным телом. В молекуле углеводорода возникает дипольный момент, обусловливающий ее притяжение к сорбенту. Возникший дипольный момент индуцирует последующие, чем и обеспечивается процесс сорбции. Дисперсионный эффект основан на мгновенной поляризации молекулы углеводорода, постоянно колеблющейся по величине и направлению излучением света. Адсорбция возрастает: - с увеличением дипольного момента молекул углеводородов, то есть - степени их поляризации; - по мере удлинения цепи углеродных атомов; - по мере увеличения молекулярного веса и диаметра молекул углеводородов; - с увеличением температуры кипения. Исследуемые углеводороды представлены метаном (CH4) и его предельными (этан - С2Н6, пропан - С3Н8, бутан - С4Н10, пентан - С5Н12 и др.) и непредельными (этилен - С2Н4, пропилен - С3Н6, бутилен - С4Н8 и др.) гомологами. ............ |