MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Базисные сплайны

Название:Базисные сплайны
Просмотров:102
Раздел:Математика
Ссылка:Скачать(391 KB)
Описание: Введение Большинство численных методов решения задач математического анализа так или иначе связано с аппроксимацией функций. Это и собственно задачи приближения функций (интерполяция, сглаживание, наилучш

Часть полного текста документа:

Введение

Большинство численных методов решения задач математического анализа так или иначе связано с аппроксимацией функций. Это и собственно задачи приближения функций (интерполяция, сглаживание, наилучшие приближения) и задачи, в которых аппроксимация присутствует как промежуточный этап исследования (численное дифференцирование и интегрирование, численное решение дифференциальных и интегральных уравнений).

Типичной задачей приближения является задача интерполяции: по заданной таблице чисел , восстановить функцию  с той или иной точностью на отрезке [а, b] действительной оси. Классический метод ее решения состоит в построении интерполяционного многочлена Лагранжа, определяемого равенством

 

Хотя согласно теореме Вейерштрасса всякая непрерывная функция  на отрезке  может быть как угодно хорошо приближена многочленами, практические возможности применения многочленов Лагранжа ограничены. Прежде всего, используя подобный аппарат, мы должны быть уверены, что, выбрав достаточно большое число узлов интерполяции, получим хорошее приближение интерполируемой функции. Однако, как показывает ряд простых примеров, это часто нельзя гарантировать.

С. Н. Бернштейном (1916 г.) было установлено, что последовательность интерполяционных многочленов Лагранжа построенных для непрерывной функциина отрезке [—1, 1] по равноотстоящим узлам , с возрастанием  не стремится к . Еще более любопытен другой пример, восходящий к Рунге (1901 г.) и состоящий в том, что указанный интерполяционный процесс не сходится на [—1, 1] даже для гладкой сколь угодно раз дифференцируемой функции (рис. 0.1). В обоих случаях

Иногда эти трудности удается преодолеть путем специального выбора узлов интерполяции или за счет перехода к каким-либо обобщенным многочленам. Однако такой путь, как правило, весьма усложняет вычисления и к тому же не избавляет нас от второй проблемы — быстрого накопления ошибок округления с ростом степени многочлена. Поэтому на практике для того, чтобы достаточно хорошо приблизить функцию, вместо построения интерполяционного многочлена высокой степени используют интерполяцию кусочными многочленами.

Примером такого рода является кусочно-линейная интерполяция. В общем случае отрезок  точками  разбивается на части и на каждом промежутке , строится свой интерполяционный многочлен. Полученные таким образом многочлены (обычно одной и той же степени) дают интерполяцию функции  на всем отрезке , которая, вообще говоря, не обеспечивает гладкого перехода от одного звена к другому и может быть даже разрывной, если точки  не включаются в число узлов интерполяции. Это допустимо, если не требуется восстанавливать функцию с заданной степенью гладкости. В частности, различные таблицы составляются с таким шагом, чтобы промежуточные значения функции с принятой точностью можно было вычислить с помощью линейной или квадратичной интерполяции. Для гладкого восстановления таблично заданной функции нужно увеличить степень составляющих многочленов, а остающиеся свободными коэффициенты определять из условий гладкого сопряжения многочленов на соседних промежутках. Получающиеся при этом гладкие кусочно-многочленные функции с однородной структурой (составленные из многочленов одной и той же степени) называются сплайн-функциями или просто сплайнами. Простейший и исторически самый старый пример сплайна - ломаная.

Термин сплайн произошел от английского spline, что в переводе означает рейка, стержень — название приспособления, которое применяли чертежники для проведения гладких кривых через заданные точки. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчислень
Просмотров:260
Описание: Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчислень Ефективний шлях багаторазового зведення за модулем – використання методу Монтгомері, який було запропоно

Название:Функции сравнительного правоведения
Просмотров:90
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫКУРСОВАЯ РАБОТА на тему Функции сравнительного правоведения по дисциплине Сравнительное правоведениеКИЕВ 2011   СОДЕРЖАНИЕ Введение 1. Научная функц

Название:Функции государства в их многообразии и развитии
Просмотров:73
Описание: Содержание Введение Глава 1. Функции государства 1.1. Понятие и признаки функций государства 1.2 Классификация функций государства 1.3 Глобальные проблемы и функции государства 1.4. Эволюция функций госуд

Название:Булевы функции
Просмотров:192
Описание: 1.Основные понятия булевой алгебры Технические вопросы, связанные с составлением логических схем ЭВМ, можно решить с помощью математического аппарата, объектом исследования которого являются функции, приним

Название:Предмет и функции философии
Просмотров:136
Описание: Содержание Введение 1. Предмет философии. Место философии в системе наук и культуре 2. Основные разделы философии 3. Мировоззренческая, методологическая, рефлексивно–критическая и интегративная функция

 
     

Вечно с вами © MaterStudiorum.ru