Часть полного текста документа: АННОТАЦИЯ В данной работе будут рассмотрены три метода приближённого интегрирования определённого интеграла: метод прямоугольников, метод трапеций и метод Симпсона. Все эти методы будут подробно выведены с оценкой погрешности каждого из них. Для более полного восприятия материала в работу помещён раздел, в котором подробно расписано решение, всеми тремя методами, определённого интеграла. В материале имеются иллюстрации, с помощью которых, можно более глубоко вникнуть в суть рассматриваемой темы. СОДЕРЖАНИЕ Введение..................................................................3 Основная часть..........................................................4 -формула прямоугольников........................................6 -формула трапеций..................................................8 -формула Симпсона................................................10 Практика................................................................15 Заключение.............................................................19 Список литературы....................................................20 ВВЕДЕНИЕ Цель данной курсовой работы - изучение методов приближённого интегрирования. Для некоторых подынтегральных функций интеграл можно вычислить аналитически или найти в справочниках. Однако в общем случае первообразная может быть не определена: либо первообразные не выражаются через элементарные функции, либо сами подынтегральные функции не являются элементарными. Это приводит к необходимости разработки приближенных методов вычисления определенных интегралов. Наиболее общеупотребительными приближенными методами вычисления одномерных определенных интегралов являются, так называемые, "классические" методы численного интегрирования: метод прямоугольников, метод трапеций, метод парабол (основанные на суммировании элементарных площадей, на которые разбивается вся площадь под функцией ). Хотя эти методы обычно предпочтительней в случае малых размерностей, они практически не годятся для вычисления многомерных интегралов, для их вычисления используются другие методы, однако в этой работе они рассмотрены не будут. ОСНОВНАЯ ЧАСТЬ I.Определение интеграла и его геометрический смысл. В начале узнаем, что такое определённый интеграл. Возможны два различных подхода к определению определённого интеграла. ОПРЕДЕЛЕНИЕ 1: приращение F(b)-F(a) любой из преобразованных функций F(x)+c при изменении аргумента от x=a до x=b называют определённым интегралом от a до b функции f и обозначается . Причём функция F является первообразной для функции f на некотором промежутке D, а числа а и b принадлежат этому промежутку. ............ |