MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Остальные рефераты -> Численные методы и их реализация в Excel

Название:Численные методы и их реализация в Excel
Просмотров:104
Раздел:Остальные рефераты
Ссылка:Скачать(901 KB)
Описание: При моделировании экономических ситуаций часто приходится решать уравнение вида: f (x, p1, p2 ,…, pn)=0 (1) где f-заданная функция, х-неизвестная переменная. p1, p2,…, pn – параметры модели.

Часть полного текста документа:


    по предмету: ''Моделирование ''
    на тему: ''Численные методы и их реализация в Excel'' Выполнила: студентка 3-курса Камчыбекова Б.
    гр. КИС-5-97
    Проверил: к.т.н. профессор. Бабак В. Ф. Бишкек - 2000 Глава 1. Подбор параметра... 3 1.1. Нелинейные алгебраические уравнения 3 1.2 Системы двух линейныхалгебраических уравнений 5 Задание1 5 Задание 2 5 Глава 2. Матричная алгебра 6 2.1 Определитель матрицы 6 2.2 Умножение матриц 7 Задание 3 7 Умножение на число 14 9 Задание 4 10 2.6 Система линейных алгебраических уравнений 14 Задание 5 14 Глава3. Поиск решения... 17 1.2Оптимизация 17 3.2Безусловный экстремум 17 Задание6 18 3.4 Математическое программирование 22 3.4.1. Линейное программирование 23 Задание 7 23 Задание 8 25 Задание 9 25 Задание 12 27 Глава 1. Подбор параметра... 1.1. Нелинейные алгебраические уравнения
    При моделировании экономических ситуаций часто приходится решать уравнение вида: f (x, p1, p2 ,..., pn)=0 (1) где f-заданная функция, х-неизвестная переменная. p1, p2,..., pn - параметры модели. Решение таких уравнений может быть как самостоятельной, так и частью более сложных задач. Как правило, исследователя интересует поведение решения в зависимости от параметров pk , k=?1,n Решениями или корнями уравнения (1) называют такие значения переменной х, которые при подстановке в уравнение обращают его в тождество. Только для линейных или простейших нелинейных уравнений удается найти решение в аналитической форме, т.е. записать формулу, выражающую искомую величину х в явном виде через параметры pk (например формула корней квадратного уравнения). В большинстве же случаев приходится решать уравнение (1) численными методами, в которых процедура решения задается в виде многократного применения некоторого алгоритма. Полученное решение всегда является приближенным, хотя может быть сколь угодно близко к точному. Рассмотрим последовательность действий для получения решения нелинейного уравнения в среде электронной таблицы. Пусть надо решить уравнение вида: (2) Cформируем лист электронной таблицы, как показано на рис.1. Уравнение (2) запишем в клетку С5, начиная со знака равенства, а вместо переменной x укажем адрес клктки В5, которая содержит значение начального приближения решения. вместо переменной x укажем адрес клетки В5. которая содержит значение начального приближения решения Метод, применяемый в EXCEL для решения таких уравнений -модифицированный конечными разностями метод Ньютона, который позволяет не сильно заботится о начальном приближении, как этого требуют другие численные методы решения уравнений (метод хорд, дихотомии и др.) Единственно, что следует учесть - это то, что будет' найдено решение ближайшее к выбранному начальному приближению. Для получения решения уравнения (2) надо выполнить следующую последовательность действий: 1. Выполнить команду Сервис/Подбор параметра... (получим лист электронной таблицы, как показано на Рис. 2); 2. Заполнить диалоговое окно Подбор параметра...: 2,1 Щелкнуть левой клавишей мыши в поле Установить в ячейке, после появления в нем курсора, переместить указатель мыши и щелкнуть на клетке с формулой, в нашем случае это клетка С5, абсолютный адрес которой $С$5 появится в поле рис.1 Этот адрес можно было бы набрать на клавиатуре, после появления курсора в поле. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Использование финансов для решения социальных проблем
Просмотров:62
Описание: СОДЕРЖАНИЕ Введение 1. Расходы государства на социальные нужды 1.1 Сущность расходов государства на социальные нужды 1.2 Группы расходов на социальные нужды 2. Финансовые методы повышения жизненного уро

Название:Применение теории решения изобретательских задач при создании новой техники
Просмотров:111
Описание: СОДЕРЖАНИЕ   ВВЕДЕНИЕ ПРИМЕНЕНИЕ ТЕОРИИ РЕШЕНИЯ ИЗОБРЕТАТЕЛЬСКИХ ЗАДАЧ ПРИ СОЗДАНИИ НОВОЙ ТЕХНИКИ 1. Закон полноты частей системы 2. Закон «энергетической проводимости» системы 3. Закон согласования

Название:Исследование правового института судебного решения
Просмотров:68
Описание: Введение Судебное решение по гражданскому делу – институт, теоретической разработке которого в науке гражданского процессуального права уделялось серьезное внимание. Интерес, проявленный процессуальной

Название:Программирование системы уравнений
Просмотров:98
Описание: Содержание Введение 1 Постановка задачи 2 Решение системы уравнения методом Гаусса 3 Решение уравнения методами Ньютона, Хорд 4 Разработка блок схемы решения системы уравнения методом Гаусса 5 Разрабо

Название:Научная организация творческого процесса. Алгоритм решения изобретательских задач
Просмотров:83
Описание: СОДЕРЖАНИЕ   Введение Научная организация творческого процесса Алгоритм решения изобретательских задач Литература Приложения процесс творчество алгоритм изобретательство Введение Тем

 
     

Вечно с вами © MaterStudiorum.ru