ДИФРАКЦІЯ СВІТЛА
1. Принцип Гюйгенса-Френеля
Під дифракцією світла розуміють будь-яке відхилення світлових променів від прямих ліній, що виникають у результаті обмеження чи перекручування хвильового фронту. Найпростішим дифракційним прикладом є відсутність чітких границь світла і тіні при висвітленні отвору в непрозорому екрані (рис. 1). Якби світло поширювалося строго прямолінійно, то тінь за екраном мала б чітку межу. Однак на практиці перехід від світла до тіні в площині спостереження відбувається поступово, а при використанні квазімонохроматичних джерел можливе спостереження біля геометричної границі світла і тіні, що чергуються, світлих і темних смуг. Дифракція є прямим наслідком хвильової природи світла і має місце для будь-яких інших хвиль, наприклад акустичних. Основна задача, що виникає при розгляді дифракційних явищ, складається в обчисленні розподілу інтенсивності світла в області дифракції. Ця задача в багатьох практично важливих випадках може бути розв’язана на базі принципу Гюйгенса-Френеля. Пояснимо цей принцип на прикладі обчислення світлового збурювання в деякій точці М, вилученої від точкового джерела монохроматичного випромінювання (рис. 2). Оточимо джерело уявлюваною замкнутою поверхнею s, за яку можна взяти будь-яку хвильову поверхню. Кут y між нормаллю до хвильової поверхні сг і напрямком на точку спостереження (точку М) називають кутом дифракції. Принцип Гюйгенса-Френеля зводиться до наступного: 1. Кожна точка уявлюваної замкнутої поверхні є джерелом вторинної хвилі, амплітуда і фаза якої задаються реальним джерелом. 2. Усі вторинні хвилі когерентні і їхні комплексні амплітуди в будь-якій точці спостереження М можна складати (інтерференція вторинних хвиль). 3. Амплітуда вторинних хвиль убуває при збільшенні кута дифракції y і максимальна при y = 0.
Рисунок 1- Дифракція світла на отворі в непрозорому екрані: 1- джерело світла; 2- непрозорий екран з отвором; 3- площина спостереження
Рис. 2- До пояснення принципу Гюйгенса-Френеля
Запишемо названі положення, математично охарактеризувавши залежність амплітуди вторинних хвиль від кута коефіцієнтом нахилу К(y).
Комплексна амплітуда світлового коливання dU, створюваного в точці М одним довільним елементом ds, виразиться співвідношенням:
dU = K(y),(1)
де А- амплітуда хвилі, створюваної реальним точковим джерелом на одиничній відстані від нього; r- відстань від точкового джерела до обраної точки на поверхні; k = 2p/l; s- відстань від точки на поверхні s до точки спостереження М.
Другий співмножник виразу (1) описує сферичну хвилю від реального джерела на відстані м від нього, а третій співмножник - вторинну хвилю від ділянки поверхні ds на відстані s від цієї ділянки. Результуюче світлове збурювання в точці М визначається підсумовуванням усіх вторинних хвиль, що йдуть від різних точок поверхні s. Математично підсумовування вторинних хвиль означає інтегрування виразу (1). У результаті маємо
U(M) = A,(2)
де s- площа поверхні, що оточує джерело.
Якщо на шляху поширення світла є непрозорі екрани з отворами, то інтегрування у формулі (2) виконують по площі отворів. У кожну точку спостереження (точку М) від кожної точки отворів направляється своя вторинна хвиля. Ці хвилі часто називають дифрагованими, а відповідні їм хвильові нормалі- дифрагованими променями. ............