MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Дискретная математика

Название:Дискретная математика
Просмотров:127
Раздел:Математика
Ссылка:Скачать(66 KB)
Описание: ookfoldsheets0Федеральное агентство по образованию РФ «ДИСКРЕТНАЯ МАТЕМАТИКА» (КОНСПЕКТ ЛЕКЦИЙ)   Преподаватель: профессор, Архипов Игорь Константинович 1. &n

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

\bookfoldsheets0Федеральное агентство по образованию РФ

«ДИСКРЕТНАЯ МАТЕМАТИКА»

(КОНСПЕКТ ЛЕКЦИЙ)

 

Преподаватель: профессор, Архипов Игорь Константинович

1.   МНОЖЕСТВА

 

Множество – совокупность элементов, обладающих каким-то одним общим свойством. (Это определение не является строгим, оно лишь показывает особенности построения множеств, т.е. для построения множества важно указать свойство, которым обладают все его элементы).

Если каждому элементу множества можно присвоить номер и этот номер не повторяется, то такое множество называется счетным или конечным.

Если такого номера для каждого элемента не существует, то такое множество называется бесконечным.

Бесконечное множество часто называют континуумом (например: совокупность точек на плоскости).

Если можно пересчитать все число элементов в счетном множестве, то эта сумма называется мощностью множества.

Множества задаются различными способами:

1.   С помощью перечисления всех его элементов.

{0,1,2,3,4,5,6,7,8,9}

2.   Алгоритмическая форма (в виде последовательности или фомул).

а) конечное

М={2;4;6;8} <=> М={m|2n;n-целое;1<=n<=4}

б) бесконечное

А={х| |х-1|<3}



2.   СВОЙСТВА СЧЕТНЫХ МНОЖЕСТВ

1.   Всякое подмножество счетного множества конечно или счетно

Подмножеством множества А называется множество А` все элементы которого принадлежат множеству А

         

Пример:

2.   Сумма конечного или счетного числа  конечных или счетных множеств есть конечное или счетное множество.

3.   Множество всех рациональных чисел счетно.

4.   Алфавитом называется любое непустое множество.

Пустое множество – множество, которое не содержит ни одного элемента.

Элементы множества под названием АЛФАВИТ называют буквами (символами).

Символом в данном алфавите любая конечная последова­тель­ность букв.

 

Для каждого множества А существуют множества, элементами которого являются только все его подмножества.

Такое подмножество называют семейством множеств А или булеаном. (обозначается В(А))

Будем называть вектором (кортежем) упорядоченный набор элементов и обозначать его , заметим, что в отличие от множества, элементы в векторе могут повторяться. Эти элементы называются координатами или проекциями.

Количество элементов в векторе называется его длиной, если в векторе 2 элемента, то двойка, если n элементов, то n-ка.

Теория множеств строится на основе систем аксиом.

1.   Аксиома существования: Существует по крайней мере одно множество.

2.    Аксиома объемности: Если множества А и В составлены из одних и тех же элементов, то они совпадают.

3.   Аксиома объединения: Для произвольных множеств А и В существует множество, элементами которого являются все элементы множества А  и все элементы множества В и никакие другие элементы множество не содержит.

4.   Аксиома разности: Для произвольных множеств А и В существует множество, элементами которого являются те и только те элементы множества А, которые не содержатся в множестве В.

5.   Аксиома существования пустого множества: Существует множество не содержащее ни одного элемента.

 

 

 


3.   ОСНОВНЫЕ ОПЕРАЦИИ НАД МНОЖЕСТВАМИ

 

1.   Включение (объединение)

Множество А входит (включено) в множество В, или А является подмножеством В. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Основные элементы методологии государственной кадровой политики
Просмотров:94
Описание:   Основные элементы методологии государственной кадровой политики Содержание 1. Методологические основы государственной кадровой политики 1.1 Понятие и методологичес

Название:Понятие и особенности аграрных правоотношений, их элементы
Просмотров:78
Описание: Понятие и особенности аграрных правоотношений, их элементы   Нормы аграрного права, как и любые другие правовые нормы, вводят для того, чтобы определенным образом урегулировать общественные отношения суб

Название:Язык Paskal. Основные элементы языка. Структура программы
Просмотров:76
Описание: Содержание   Введение 1. Структура программы 2. Алфавит языка 3. Простейшие конструкции 4. Выражения 5. Типы данных 6. Операции Заключение Литература     Введение Тема реферата "Я

Название:Элементы теории вероятностей. Случайные события
Просмотров:150
Описание: Элементы теории вероятностей. Случайные события   Цель изучения - развить навыки составления и анализа математических моделей несложных задач прикладного характера, связанных со случайными явлениями, нау

Название:Элементы тензороного исчисления
Просмотров:134
Описание: Содержание Введение §1. Линейные преобразования §2. Индексные обозначения §3. Общее определение тензоров §4. Скалярное произведение и метрический тензор §5. Действия с тензорами §6. Поднятие и опускани

 
     

Вечно с вами © MaterStudiorum.ru