Дубний (нильсборий, ганий)
105
Db
2 11 32 32 18 8 2
ДУБНИЙ
[262]
6d37s2
Элемент с атомным номером 105. К его открытию параллельно шли два больших научных коллектива: Лаборатория ядерных реакций Объединенного института ядерных исследований в Дубне и Радиационная лаборатория имени Эрнста Лоуренса в Беркли, США. В Дубне элемент сумели получить раньше и назвали нильсборием в честь Нильса Бора. Американские физики, получившие элемент №105 двумя месяцами позже, предложили для него свое название – ганий, в честь Отто Гана. Под этим названием он и фигурирует в американской литературе.
Первая попытка
Как и все другие элементы тяжелее фермия, элемент №105 получен в ядерных реакциях с участием ускоренных тяжелых ионов. Первые опыты по синтезу 105-го элемента начались в Дубне в 1967 г. под руководством академика Г.Н. Флерова. Была выбрана реакция полного слияния ионов неона-22 (ускоренных на циклотроне до энергии около 120 МэВ) с америцием-243:
24395Am + 2210Ne → (265105)* → 260, 261105 + 4 – 510n.
По теоретическим оценкам известных американских ученых Гленна Сиборга и Виктора Вайолы, изотопы 260105 и 261105 должны быть альфа-излучателями. За очень короткое время (от 0,01 до 0,1 секунды) они должны были, испустив по альфа-частице (с энергией 9,4...9,7 МэВ), превратиться в ядра 103-го элемента.
Этот элемент достаточно изучен: его изотопы с массой 255 и 256 «живут» 20...30 секунд и тоже испускают альфа-частицы, превращаясь в ядра элемента №101 – менделевия. Вполне закономерно, что первые попытки идентифицировать элемент №105 сводились к установлению генетической связи альфа-частиц с новыми, не наблюдавшимися прежде характеристиками, с альфа-частицами, порожденными уже известным 103-м элементом.
К началу 1968 г. в результате длительных опытов удалось зарегистрировать около десяти случаев таких генетически связанных альфа-распадов. Новый короткоживущий излучатель давал альфа-частицы с энергией около 9,4 МэВ, что соответствовало предсказаниям теоретиков. С большой вероятностью это излучение можно было приписать элементу №105, однако наблюдавшийся эффект был очень мал и неустойчив, а теория не слишком надежна.
Для ядер с нечетным числом нуклонов ее прогнозы о времени жизни и энергии альфа-частиц всегда очень неопределенны. Если в ряду «четных» ядер (число протонов и число нейтронов – четные) эти свойства изменяются закономерно, то у «нечетных» картина совсем иная: исключений из правила почти столько же, сколько «правильных» ядер. Естественно, что неопределенность теоретических оценок затрудняет поиски «нечетных» элементов и изотопов.
Правда, кое в чем теория помогла. Она допускала, что превращение ядра элемента №105 в 103-й может идти несколько необычным путем. Испустив альфа-частицу, ядро со 105 протонами не сразу превращается в ядро 103-го элемента в основном его состоянии; может существовать некое промежуточное, возбужденное состояние образующихся дочерних ядер. Поэтому энергия испускаемых новыми ядрами альфа-частиц может оказаться меньше предсказанной теоретиками величины 9,4...9,7 МэВ и составить всего 8,9...9,2 МэВ. ............