Сидоренков В.В., МГТУ им. Н.Э. Баумана
 Рассматриваются структура и характеристики распространения векторного четырехкомпонентного единого электродинамического поля, реализующего своим существованием функционально связанные между собой составляющие его поля: электромагнитное поле с векторными компонентами электрической и магнитной напряженности, поле электромагнитного векторного потенциала, состоящего из электрической и магнитной компонент, электрическое поле с компонентами электрической напряженности и электрического векторного потенциала, магнитное поле с компонентами магнитной напряженности и магнитного векторного потенциала. 
 В настоящее время установлено [1, 2], что в отношении полноты охвата явлений электромагнетизма, наряду с системой уравнений электродинамики Максвелла электромагнитного (ЭМ) поля с компонентами электрической  и магнитной  напряженности: 
 (a) ,          (b) ,              (1)   
 (c) ,   (d) ,      
 существуют и другие системы полевых уравнений, концептуально необходимые для анализа и адекватного физико-математического моделирования электродинамических процессов в материальных средах. Здесь  и  - электрическая и магнитная постоянные, ,  и  - удельная электропроводность и относительные диэлектрическая и магнитная проницаемости среды, соответственно,  - объемная плотность стороннего электрического заряда;  - постоянная времени релаксации заряда в среде за счет электропроводности. 
 Уравнения в этих других системах рассматривают области пространства, где присутствуют либо только поле ЭМ векторного потенциала с электрической  и магнитной  компонентами: 
 (a) ,             (b) ,           (2)    
 (c) ,   (d) ;    
 либо электрическое поле с компонентами  и :
 (a) ,    (b) ,            (3)             (c) ,                (d) ;                   
 либо, наконец, магнитное поле с компонентами  и :
 (a) ,    (b) ,           (4)    
 (c) ,                 (d) .     
 Основная и отличительная особенность уравнений систем (2) – (4) в сравнении с традиционными уравнениями Максвелла ЭМ поля (1) с физической точки зрения состоит в том, что именно они, используя представления о поле ЭМ векторного потенциала, способны последовательно описать многообразие электродинамических явлений нетепловой природы в материальных средах, определяемых электрической или магнитной поляризацией и передачей среде момента ЭМ импульса, в частности, реализуемых в процессе электрической проводимости [3] . 
 Принципиально и существенно то, что все эти системы электродинамических уравнений, в том числе, и система (1) для локально электронейтральных сред (), являются непосредственным следствием фундаментальных исходных соотношений функциональной первичной взаимосвязи ЭМ поля и поля ЭМ векторного потенциала [1, 2]:
 (a) ,   (b) ,                                     (5)     
 (c) ,      (d) .  
 Очевидно, что данная система соотношений может служить основой для интерпретации физического смысла поля ЭМ векторного потенциала [4], выяснения его роли и места в явлениях электромагнетизма. Однако самое главное и интересное в них то, что они представляют собой систему дифференциальных уравнений, описывающих свойства необычного вихревого векторного поля, состоящего их четырех полевых векторных компонент , ,  и , которое назовем единое электродинамическое поле.  ............