СОДЕРЖАНИЕ
1. Задача №1 «Планирование производства»
2. Задача №3 «Транспортная задача»
3. Задача №4 «Назначение на работы»
4. Задача №2 «Планирование портфеля заказов»
Задача №1 «Планирование производства»
Небольшая фабрика выпускает два типа красок: для внутренних (I) и наружных (Е) работ.
Продукция обоих видов поступает в оптовую продажу. Для производства красок используются два исходных продукта А и В. Максимально возможные суточные запасы этих продуктов составляют 10 и 16 тонн, соответственно. Расходы продуктов А и В на 1 т соответствующих красок приведены в табл. 2.1.
Таблица 2.1
Исходные данные задачи о планировании производства красок
Исходный продукт
Расход исходных продуктов
на 1 т краски, т
Максимально возможный запас, т
краска Е
краска І
А
В
1
2
2
4
10
16
Минимальный суточный спрос на краску для внутренних работ составляет 1 т, а для внешних работ 2 т. Суточный спрос на краску i никогда не превышает спроса на краску Е более чем на 1 т. Кроме того, установлено, что спрос на краску I никогда не превышает 2 т в сутки. Оптовые цены одной тонны красок равны: 3000 руб. для краски Е и 2000 руб. для краски I.
Какое количество краски каждого вида должна производить фабрика, чтобы доход от реализации продукции был максимальным?
В нашем случае фабрике необходимо спланировать объем производства красок так, чтобы максимизировать прибыль. Поэтому переменными являются:
Хi — суточный объем производства краски I и Хе — суточный объем производства краски Е.
Суммарная суточная прибыль от производства Xi краски I и Xe краски Е равна
Z = 3000*Хe+ 2000*Xi (2.1)
Целью фабрики является определение среди всех допустимых значений Xi и Xe таких, которые максимизируют суммарную прибыль, т. е, целевую функцию Z.
Перейдем к ограничениям, которые налагаются на Xe и Xi. Объем производства красок не может быть отрицательным, следовательно:
Хt, Хi > 0 (2.2)
Расход исходного продукта для производства обоих видов красок не может превосходить максимально возможный запас данного исходного продукта, следовательно:
Хe + 2Xi <= 10 (2.3)
2Xe + Xi <= 16 (2.4)
Кроме того, ограничения на величину спроса на краски таковы:
Xi-Xe <= 1 (2.5)
Xi < 2 (2.6)
Таким образом, математическая модель данной задачи имеет следующий вид:
максимизировать
Z= 300Хe + 2000Xi
при следующих ограничениях:
Xe+2Xi<= 10
2Xe+Xi<= 16
Xi-Xe<=1
Xi<=2
Xi, Xe>=0
Заметим, что данная модель является линейной, т. к. целевая функция 1-ограничения линейно зависят от переменных.
Вводим данные в таблицу Excel.
Покажем формулы
Решим данную задачу с помощью команды Сервис - Поиск решения Excel. Средство поиска решений является одной из надстроек Excel. Если в меню Сервис отсутствует команда Поиск решения, то для ее установки необходимо выполнить команду Сервис, Надстройки, Поиск решения.
Для того чтобы получить максимальный доход надо произвести краски І 1 т., а краски Е 6 т.
Задача №3 «Транспортная задача»
Предположим, что фирма имеет 4 фабрики и 5 центров распределения ее товаров. ............