ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИМЕНИ ИММАНУИЛА КАНТА кафедра экономики КОНТРОЛЬНАЯ РАБОТА
по дисциплине «Экономико – математические методы в управлении»
вариант №30
КАЛИНИНГРАД
2008
Задание
Задание 1.2.
Смесь можно составить из n продуктов Сj (j=1,n). В каждом из продуктов содержится m компонентов. Минимально допустимый объем содержания i-го компонента в смеси выражается величиной bi (i=1,3). Содержание i-го компонента в единице j-го продукта выражается величиной аij. Цена единицы j-го продукта равна сj. Составить смесь, минимальную по стоимости, выбрав для решения данной задачи наиболее рациональный способ.
C1
C2
C3
bi
cj
9 6 7
a1j
7 5 8 70
a2j
8 2 3 40
a3j
9 6 7 50
Задание 2.2.
Найти графоаналитическим методом оптимальное решение задачи нелинейного программирования.
maxZ = 3.6x1 – 0.2x12 + 0.8x2 – 0.2x22
2x1 + x2 ≥ 10
x12 -10x1 + x2 ≤ 75
x2 ≥ 0
Задание 3.1.
После нескольких лет эксплуатации оборудование может оказаться в одном из трех состояний:
1) требуется профилактический ремонт;
2) требуется замена отдельных деталей и узлов;
3) требуется капитальный ремонт.
В зависимости от ситуации руководство предприятия может принять следующие решения:
1) отремонтировать оборудование своими силами, что потребует затрат а;
2) вызвать специальную бригаду ремонтников, расходы в этом случае составят b;
3) заменить оборудование новым, реализовав устаревшее по остаточной стоимости.. Совокупные затраты на это мероприятие составят с.
Требуется найти оптимально решение данной проблемы по критерию минимизации затрат с учетом следующих предположений:
а) на основе обобщения опыта эксплуатации аналогичного оборудования определены вероятности наступления соответствующих состояний – q;
б) имеющийся опыт свидетельствует о равной вероятности наступления соответствующих состояний;
в) о вероятностях наступления соответствующих состояний ничего определенного сказать нельзя.
П1
П2
П3
a
13 9 15
b
20 12 11
c
18 10 14
q
0.3 0.45 0.25
λ = 0.7
Задание 1.2.
Смесь можно составить из n продуктов Сj (j=1,n). В каждом из продуктов содержится m компонентов. Минимально допустимый объем содержания i-го компонента в смеси выражается величиной bi (i=1,3). Содержание i-го компонента в единице j-го продукта выражается величиной аij. Цена единицы j-го продукта равна сj. Составить смесь, минимальную по стоимости, выбрав для решения данной задачи наиболее рациональный способ.
C1 C2 C3 bi cj 9 6 7 a1j 7 5 8 70 a2j 8 2 3 40 a3j 9 6 7 50
Смесь, минимальная по стоимости:
7x1 + 5x2 + 8x3 ≥ 70
8x1 + 2x2 + 3x3 ≥ 40
9x1 + 6x2 + 7x3 ≥ 50
x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
F = 9x1 + 6x2 + 7x3 → min
После транспонирования матрицы элементов aij, cсимметричная двойственная задача будет иметь вид:
S(y1,y2,y3) = 70y1 + 40y2 + 50y3 → max , при ограничениях:
7y1 + 8y2 + 9y3 ≥ 9
5y1 + 2y2 + 6y3 ≥ 6
8y1 + 3y2 + 7y3 ≥ 7
y1 ≥ 0; y2 ≥ 0; y3 ≥ 0
Для решения двойственной задачи линейного программирования симплекс – методом, приведём систему неравенств к виду системы уравнений:
7y1 + 8y2 + 9y3 + y4 ≥ 9
5y1 + 2y2 + 6y3 + y5 ≥ 6
8y1 + 3y2 + 7y3 + y6 ≥ 7
y1≥0;y2≥0;y3≥0;y1≥0;y2≥0;y3≥0
S(y1,y2,y3) = 70y1 + 40y2 + 50y3 → max
По правилу соответствия переменных, базисным переменным прямой задачи соответствуют свободные переменные двойственной задачи:
x1 x2 x3 x4 x5 x6
y1 y2 y3 y4 y5 y6
Первая симплексная таблица:
Базис Сб А0
y1
70
y2
40
y3
50
y4
0
y5
0
y6
0
y4 0 9 7 8 9 1 0 0 y5 0 6 5 2 6 0 1 0 y6 0 7 8 3 7 0 0 1 0 -70 -40 -50 0 0 0
Вторая симплексная таблица:
Базис Сб А0
y1
70
y2
40
y3
50
y4
0
y5
0
y6
0
y4 0 23/8 0 43/8 23/8 1 0 -7/8 y5 0 13/8 0 1/8 13/8 0 1 -5/8 y1 70 7/8 1 3/8 7/8 0 0 1/8 245/4 0 -55/4 45/4 0 0 35/4
Третья симплексная таблица:
Базис Сб А0
y1
70
y2
40
y3
50
y4
0
y5
0
y6
0
Y2 40 23/43 0 1 23/43 8/43 0 -7/43 y5 0 67/43 0 0 67/43 -1/43 1 -26/43 y1 70 29/43 1 0 29/43 -3/43 0 8/43 2950/43 0 0 800/43 110/43 0 280/43
В последней таблице в строке Δ нет отрицательных элементов. ............