ЭКСПЕРИМЕНТАЛЬНОЕ НАБЛЮДЕНИЕ ВОЛН МАГНИТНОГО ПОЛЯ И ИССЛЕДОВАНИЕ ИХ РАСПРОСТРАНЕНИЯ В МЕТАЛЛАХ
В.В. Сидоренков МГТУ им. Н.Э. Баумана В настоящее время установлено [1], что реальная структура электромагнитного (ЭМ) поля представляет собой необычное с общепринятых позиций вихревое векторное поле, состоящее из двух функционально связанных между собой электродинамических полей: вихревог ЭМ поля с компонентами электрической и магнитной напряженностей и поля ЭМ векторного потенциала с электрической и магнитной компонентами. Указанное поле описывается системой базовых исходных фундаментальных соотношений в виде дифференциальных уравнений:
(a) , (b) , (1)
(c) , (d) ,
которые непосредственно получаются из традиционных [2] уравнений Максвелла для ЭМ поля. Здесь - постоянная времени релаксации заряда в среде за счет электропроводности. Проведенный анализ показал [1], что с концептуальной точки зрения электродинамическое поле, описываемое системой (1) физически логично называть реальное электромагнитное поле.
Основным фундаментальным своством соотношений (1) является возможность вывода на их основе не только системы уравнений Максвелла с и компонентами, но и структурно аналогичных максвелловской трех других систем электродинамических уравнений: поля ЭМ векторного потенциала с и компонентами, электрического поля с и компонентами и, наконец, магнитное поле с и компонентами. В частности, система электродинамических уравнений для магнитного поля будет иметь следующий вид:
(a) , (b) , (2)
(c) , (d) .
Поскольку при изучении взаимодействия электродинамического поля с материальной средой, в сущности, все сводится к стремлению описать энергетику явлений электромагнетизма, то однозначным подтверждением реальности структуры магнитного поля в виде двух компонент и служит следующее из уравнений (2) соотношение энергетического баланса для потока энергии, обуславливающей явление намагничивания материальной среды:
div. (3)
Данное соотношение баланса описывает энергетику условий реализации обычной магнитной поляризации среды (первое слагаемое правой части (3)) посредством переноса извне в данную точку потока вектора соответствующей энергии. Однако это соотношение устанавливает также и наличие динамической поляризации вещества (в частности, проводящих сред) за счет действия переменной во времени магнитной компоненты поля векторного потенциала . Важно отметить, что явления динамической магнитной поляризации уже имеет прямое экспериментальное воплощение: это эффект динамического намагничивания в ферритах и магнитоупорядоченных металлах [3].
Форма представленных систем уравнений системы (2) говорит о существовании волновых решений для компонент и магнитного поля. В этом можно убедиться, взяв, как обычно, ротор от одного из роторных уравнений системы, и после чего подставить в него другое роторное уравнение. В качестве иллюстрации получим волновое уравнение, например, относительно :
.
Здесь, согласно (2d), , - оператор Лапласа, а - фазовая скорость волны в отсутствие поглощения. Как показал анализ [1], компоненты и волн магнитного поля в диэлектрической среде ведут себя специфично: , то есть имеют взаимный сдвиг по фазе на π/2. ............