| Часть полного текста документа:Электромагнитный векторный потенциал как следствие дуальности параметров частиц микромира Сидоренков В.В., МГТУ им. Н.Э. БауманаПоказано, что электромагнитный векторный потенциал как физическая величина представляют собой полевой эквивалент локальных характеристик микрочастицы: ее электрическому заряду, кратному кванту электрического потока - заряду электрона, соответствует электрическая компонента векторного потенциала, а удельному (на единицу заряда) кинетическому моменту, кратному кванту магнитного потока, отвечает магнитная компонента векторного потенциала.
 Полевая концепция природы электричества является фундаментальной основой классической электродинамики [1] и базируется на признании того факта, что взаимодействие разнесенных в пространстве электрических зарядов осуществляется посредством электромагнитных полей. Свойства этих полей описываются системой электродинамических уравнений Максвелла, откуда непосредственно следуют и понятия электрического и магнитного векторных потенциалов, физический смысл которых, несмотря на вполне определенный прогресс в установлении их физической значимости в приложениях квантовой механики [2, 3] и электродинамики [4, 5], по сей день остается по существу так и не выясненным.
 Попытаемся разобраться в этом вопросе, для чего воспользуемся системой указанных уравнений электромагнитного поля [1]:
 (a) , (b) ,
 (c) , (d) . (1)
 включающей в себя так называемые материальные соотношения:
 , , ,
 описывающие отклик среды на наличие в ней электромагнитных полей. Здесь и ? векторы напряженности электрического и магнитного полей, связанные с соответствующими векторами индукции и , ? вектор плотности электрического тока, ? объемная плотность стороннего заряда, и ? электрическая и магнитная постоянные, , и ? удельная электрическая проводимость и относительные диэлектрическая и магнитная проницаемость среды, соответственно.
 Представления о векторных потенциалах возникают как следствие того, что дивергенция ротора любого вектора тождественно равна нулю. Поэтому магнитную компоненту векторного потенциала можно ввести посредством дивергентного соотношения системы уравнений (1), а электрическую компоненту ? соотношением , описывающим поляризацию локально электронейтральной среды:
 а) , (b) . (2)
 Однозначность функций векторных потенциалов, то есть чисто вихревой характер таких полей, обеспечивается условием калибровки: . Видно, что с физической точки зрения рассматриваемые потенциалы являются поляризационными потенциалами.
 Тогда подстановка соотношения (2a) в уравнение вихря электрической напряженности (1а) приводит к известной формуле [1, 2] связи поля вектора указанной напряженности с магнитным векторным потенциалом:
 , (3)
 описывающей закон электромагнитной индукции Фарадея. Электрический скалярный потенциал: здесь не рассматривается, как не имеющий отношения к обсуждаемым в работе вихревым полям.
 При аналогичной подстановке соотношения (2b) в уравнение вихря магнитной напряженности (1c) с учетом закона Ома процесса электропроводности получаем в итоге связь этой напряженности с электрическим векторным потенциалом:
 , (4)
 где ? постоянная времени релаксации электрического заряда в среде за счет электропроводности.  ............
 |