Контрольная работа
По курсу: Теория информации и кодирования
На тему: Энтропия сигналов
1. ЭНТРОПИЯ ОБЪЕДИНЕНИЯ
Объединение - совокупность двух и более ансамблей дискретных, случайных событий. С объединением связаны понятия условной, безусловной, совместной и взаимной энтропии.
1. Безусловная энтропия - среднее количество информации, приходящееся на один символ (рис. 1). Если Х – передаваемое, а У- принимаемое сообщения, то можно записать следующие соотношения:
H(X) = H(X/Y)+H(X×Y),
H(Y) = H(Y/X)+H(X×Y).
X Y X Y
Рис. 1. Безусловная энтропия
2. Условная энтропия - количество информации об источнике, когда известно, что принимается Y, или мера количества информации в приемнике когда известно, что передается X (рис. 2).
H(X/Y) =
H(X)-H(X?×Y)
H(Y/X) =
H(Y)-H(X?×Y).
X Y X Y
Рис. 2. Условная энтропия
3. Совместная энтропия - среднее количество информации на пару пе-реданных и принятых символов (рис. 3).
H(X,Y) = H(Y,X) = H(X)+H(Y/X)= H(Y)+H(X/Y)= H(X)+H(Y)-H(X×Y).
4. Взаимная энтропия - энтропия совместного появления статистически-зависимых сообщений (рис. 4).
H(X×?Y)=H(Y×X)=H(X)-H(X/Y)=H(Y)-H(Y/X)=H(X,Y)-H(X/Y)- H(Y/X).
X Y
Рис. 3 Совместная энтропия
X Y
Рис. 4. Взаимная энтропия
На практике чаще всего встречаются взаимозависимые символы и сообщения. Например, при передаче текстовых сообщений передаются не просто буквы, а слова, имеющие определенные смысловые значения. При этом, каждая буква, и сочетание букв имеют различные вероятности появления в тексте. Условная энтропия учитывает взаимосвязь событий через их условные вероятности.
Рассмотрим схему рис. 5:
X Y
Рис. 5. Передача сообщений
Источник сообщений X- вырабатывает сообщения, элементами которого являются символы алфавита источника {x1,x2,...,xm }, вероятности появления на выходе которых равны p(x1), p(x2), ..., p(xm) ,при этом:
Энтропия источника представляет собой неопределенность появления на выходе источника сообщений символа первичного алфавита и определяется соотношением:
()
Приемник сообщений Y- принимает сообщения, элементами которого являются символы алфавита приемника {y1,y2,...,ym }, вероятности появления на входе которых равны p(y1), p(y2),..., p(ym), при этом:
Энтропия приемника представляет собой неопределенность появления на входе приемника сообщений символа после его появления на выходе источника и определяется соотношением:
(2)
Если в канале связи отсутствуют потери информации (нет помех, ис-кажений и т. ............