Эрмитовы операторы
Содержание
Линейные операторы
Линейные уравнения
Эрмитовы операторы
Линейные операторы
Пусть M и N — линейные множества. Оператор L, преобразующий элементы множества M в элементы множества N, называется линейным, если для любых элементов f и g из M и комплексных чисел λ и μ справедливо равенство
L(λ+ μg) = λLf + μLg (1)
При этом множество M = ML называется областью определения оператора L. Если Lf = f при всех f Є M, то оператор L называется тождественным (единичным) оператором. Единичный оператор будем обозначать через I.
Линейные уравнения
Пусть L — линейный оператор с областью определения ML . Уравнение
Lu = F (2)
называется линейным неоднородным уравнением. В уравнении (2) заданный элемент F называется свободным членом (или правой частью), а неизвестный элемент и из ML — решением этого уравнения.
Если в уравнении (2) свободный член F положить равным нулю, то полученное уравнение
Lu = 0 (3)
называется линейным однородным уравнением, соответствующим уравнению (2).
В силу линейности оператора L совокупность решений однородного уравнения (3) образует линейное множество; в частности, и = 0 всегда является решением этого уравнения.
Всякое решение и линейного неоднородного уравнения (2) (если оно существует) представляется в виде суммы частного решения ио этого уравнения и общего решения ŭ, соответствующего линейного однородного уравнения (3)
и = ио + ŭ.
Отсюда непосредственно выводим: для того чтобы решение уравнения (2) было единственным в ML, необходимо и достаточно, чтобы соответствующее однородное уравнение (3) имело только нулевое решение в ML . Пусть однородное уравнение (3) имеет только нулевое решение в ML. Обозначим через Rl область значений оператора L, т.е. (линейное) множество элементов вида {Lf}, где f пробегает ML. Тогда для любого F Є Rl уравнение (2) имеет единственное решение и Є ML , и, таким образом, возникает некоторый оператор, сопоставляющий каждому элементу F из Rl соответствующее решение уравнения (2). Этот оператор называется обратным оператором к оператору L и обозначается через L-1, так что
и = L-1F. (4)
Оператор L-1, очевидно, является линейным и отображает Rl на ML. Непосредственно из определения оператора L-1, а также из соотношений (2) и (4) вытекает:
L L-1F = F, F Є Rl ; L-1Lu = u, и Є ML,
т.е. L L-1=I, L-1L = I.
Если линейный оператор L имеет обратный L-1, то системы функций {φk} и {Lφk} одновременно линейно независимы. (При этом, естественно, предполагается, что все φk принадлежат ML.)
Рассмотрим линейное однородное уравнение
Lu = λu, (5)
где λ — комплексный параметр. ............