MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Коммуникации и связь -> Фильтры нижних частот

Название:Фильтры нижних частот
Просмотров:44
Раздел:Коммуникации и связь
Ссылка:Скачать(68 KB)
Описание: Академия Кафедра Физики Реферат Фильтры нижних частот Орёл 2009 Содержание   Вступление 1. Полиномиальные ФНЧ с максимально плоскими характери

Часть полного текста документа:

Академия

Кафедра Физики

Реферат

Фильтры нижних частот

Орёл 2009


Содержание

 

Вступление

1. Полиномиальные ФНЧ с максимально плоскими характеристиками затухания (фильтры Баттерворта)

2. Полиномиальные ФНЧ с равно волновыми характеристиками затухания (фильтры Чебышева)

3. ФНЧ со всплесками затухания (фильтры Золотарёва)

Заключение

Литература


Вступление

 

В простейшем и наиболее часто используемом варианте фильтр включается между резистивными нагрузками (рисунок 1.).

Рисунок 1.

Как уже отмечалось, для формирования требования к фильтру используется рабочее затухание

где

 

есть нормированная (рабочая) АЧХ фильтра. Кроме нормированной АЧХ для удобства расчётов может использоваться нормирование и других величин:

- нормированная частота;

- нормированное операторное сопротивление;

- нормированная индуктивность;

- нормированная ёмкость;

- нормированное резистивное сопротивление;

- нормированный оператор Лапласа.

Здесь ω0, f0, R0 являются нормирующими величинами.

Если в результате решения задачи найдены нормированные величины, то денормирование производится по формулам:

; ; ; ;

Графики АЧХ и затухания идеальных ФНЧ показаны на рисунке 2.

Рисунок 2.

Именно эти зависимости являются исходными при аппроксимации.


1. Полиномиальные ФНЧ с максимально плоскими характеристиками затухания (Баттерворта)

 

Полиномиальными называются ФНЧ, у которых ОПФ имеет вид:

 (1)

Не трудно показать, что нормированная АЧХ полиномиального фильтра определяется следующим выражением:

 (2)

Осуществим аппроксимацию по Тейлору АЧХ фильтра нижних частот.

При этом потребуем, чтобы в точке =0, функция  была равна единице, а все её │n-1│ первых производных обращались бы в нуль. В этом случае АЧХ синтезируемого фильтра будет максимально плоской.

Решение аппроксимации даёт следующий результат:

An=1; A1=A2=...=An-1=0; A0>0,

то есть любое вещественное положительное число (в противном случае нарушается УФР).

Следовательно, а() = 10lg  (дБ).

Чрезвычайно удобно положить А0=(100,1Δа–1), где Δа - допустимая неравномерность затухания в полосе пропускания.

Так, при Δа = 3дБ получается100,1*3=100,3=2, следовательно А0=1 и формула приобретает вид:

a() = 10lg(1+2n)

нормирующая частота ω0 в таком случае выбирается из условия:

а = Δа=3дБ.

Эту частоту принято называть граничной частотой ПП фильтра. На рисунке 3 приведено семейство АЧХ  для разных значений n.

Рисунок 3.

Из него следует, что чем выше n, тем точнее аппроксимируется характеристика идеального фильтра.

Затухание рассматриваемых фильтров:

а = 10lg(1+2n)

в полосе задерживания, где >>1 приближенно равно а20nlg и возрастает со скоростью 6n дБ/октаву.(Октава – удвоение частоты).

Если заданы требования к ФНЧ, то выбор порядка фильтра при Δа = 3дБ осуществляется из условия, которое следует из графика на рисунке 4.

Рисунок 4.

В случае, когда Δа3дБ и а010дБ, порядок фильтра может быть подсчитан по формуле:

 (3)

Нормированная операторная передаточная функция находится для выражения:

Полиномы , образующие определённый подкласс полиномов Гурвица, получили название полиномов Баттерворта по имени автора, предложившего максимально плоскую аппроксимацию АЧХ фильтров. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Метод мембранной фильтрации
Просмотров:477
Описание: СОДЕРЖАНИЕ Введение 1. Мембранная технология очистки воды 2. Классификация мембранных процессов 3. Преимущества и недостатки использования мембранной фильтрации 4. Универсальные мембранные системы очис

Название:Ортогональные полиномы и кривые распределения вероятностей
Просмотров:146
Описание: Санкт-Петербургский государственный университет Факультет прикладной математики – процессов управления Кафедра математического моделирования энергетических систем Карпова Наталия А

Название:Диагностика газовой скважины по результатам гидродинамических исследований при установившейся фильтрации
Просмотров:181
Описание: Федеральное агентство по образованию Удмуртский государственный университет Нефтяной факультет Курсовой проект по курсу Подземная гидромеханика на тему: Диагностика газово

Название:Расчет фильтра нижних частот
Просмотров:112
Описание: Содержание   Введение 1 Физические основы и принцип действия широкополосных фильтров 2 Пример расчета фильтра нижних частот на заданные параметры Заключение Список использованной литературы

Название:Полиномы Чебышева
Просмотров:141
Описание: Содержание Введение Интерполяция многочленами Методы интерполяции Лагранжа и Ньютона Сплайн-аппроксимация Метод наименьших квадратов Полиномы Чебышева Практическое задание Введение До

 
     

Вечно с вами © MaterStudiorum.ru