Часть полного текста документа:Генетическая инженерия и биотехнология Вертьянов С. Ю. Генетическая инженерия (ГИ) - совокупность методов, позволяющих искусственно переносить генетическую информацию из одного организма в другой с помощью специально созданных генетических конструкций. Одна из задач ГИ - получение организмов с желаемыми свойствами. Основным подходом ГИ является конструирование in vitro (вне организма) рекомбинантных молекул ДНК (искусственно скомбинированных из фрагментов) с заданными наследственными свойствами, поэтому ГИ также называют технологией рекомбинантных ДНК. Организмы, в которые с помощью методов ГИ введены несвойственные им гены, носят название трансгенных. Основные принципы ГИ Бурное развитие ГИ началось после 1970 г., когда из клеток бактерий научились выделять рестриктазы - ферменты, защищающие бактерии от бактериофагов. Узнавая в чужеродной ДНК специфичный для каждой рестриктазы сайт (последовательность из 4-6 нуклеотидов), рестриктазы делают в этом сайте разрывы обеих цепей ДНК. В результате чужеродная ДНК оказывается разрезанной на фрагменты и нефункциональной. На сегодня известно около 3500 рестриктаз. Например, рестриктаза Eco RI ("еко-эр-один") из кишечной палочки (Escherichia coli) узнает сайт ГААТТЦ: В результате ступенчатого разреза образуются фрагменты ДНК с выступающими однонитевыми концами, комплементарными друг другу. Эти концы могут вновь соединяться, поэтому их называют "липкими концами". Если взять ДНК, например, человека и моркови, обработать одной и той же рестриктазой и смешать, то фрагменты ДНК моркови и человека будут соединяться липкими концами. Но такая связь будет непрочной: водородные связи между всего лишь четырьмя парами оснований могут легко разойтись. Слипшиеся фрагменты ДНК можно зафиксировать, если добавить в раствор ДНК-лигазу (второй по значимости фермент ГИ), сшивающую цепи ДНК, разрезанные рестриктазой. В результате получится стабильная рекомбинантная ДНК. Далее необходимо сохранить и размножить полученные рекомбинантные молекулы. С этой целью их встраивают в специальные конструкции, называемые векторными молекулами ДНК, или векторами. Обычно векторы конструируют из бактериальных плазмид. Типичный вектор включает: 1. Сайт узнавания определенной рестриктазой для встраивания в вектор целевой ДНК. 2. Ген устойчивости к одному из антибиотиков для последующего отбора клеток, получивших рекомбинантный вектор. 3. Промотор, обеспечивающий экспрессию целевой ДНК. Приведем пример использования вектора для получения штамма кишечной палочки, продуцирующей целевой белок. Для встраивания в вектор смесь фрагментов целевой ДНК (с геном, кодирующим целевой белок) и ДНК вектора обрабатывают сначала одной и той же рестриктазой, затем ДНК-лигазой. В результате образуется рекомбинантный вектор. Для размножения его вводят в клетки кишечной палочки или дрожжей. На поверхности твердой питательной среды с антибиотиком каждая клетка, несущая рекомбинантный вектор, размножается и образует колонию из одинаковых клеток - клон. Каждая клетка-родоначальница клона получила одну молекулу рекомбинантного вектора, которая реплицируется и передается всем клеткам колонии. Поэтому такую процедуру называют молекулярным клонированием. Первой реакцией научной общественности на создание ГИ-технологии было введение ограничений на эксперименты с рекомбинантными ДНК. ............ |