MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Гипергеометрическое уравнение

Название:Гипергеометрическое уравнение
Просмотров:129
Раздел:Математика
Ссылка:Скачать(195 KB)
Описание: Министерство образования РФ Тульский государственный педагогический университет имени Л.Н.Толстого кафедра математического анализа Курсовая работа по математике "Гипергеометрическое

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Министерство образования РФ

Тульский государственный педагогический университет имени Л.Н.Толстого

кафедра математического анализа

Курсовая работа по математике

"Гипергеометрическое уравнение"

Выполнила:

студентка ф-та МиМ,

группы 3В,

Куркова Д.Н.

Проверила:

Исаева Г.Р.

Тула-2006


Содержание

Введение

1.  Гипергеометрическое уравнение

1.1 Определение гипергеометрического ряда. Гипергеометрическая функция

1.2 Свойства гипергеометрической функции

1.3 Гипергеометрическое уравнение

2.  Представление функций через гипергеометрическую

3.  Вырожденная функция

4.  Дифференциальное уравнение для вырожденной гипергеометрической функции. Вырожденная гипергеометрическая функция второго рода

5.  Представление различных функций через вырожденные гипергеометрические функции

Литература


Введение

В связи с широким развитием численных методов и возрастанием роли численного эксперимента в большой степени повысился интерес к специальным функциям. Это связано с двумя обстоятельствами. Во-первых, при разработке математической модели физического явления для выяснения относительной роли отдельных эффектов исходную задачу часто приходится упрощать для того, чтобы можно было получить решение в легко анализируемой аналитической форме. Во-вторых, при решении сложных задач на ЭВМ удобно использовать упрощенные задачи для выбора надежных и экономичных вычислительных алгоритмов. Очень редко при этом можно ограничиться задачами, приводящими к элементарным функциям. Кроме того, знание специальных функций необходимо для понимания многих важных вопросов теоретической и практической физики.

Наиболее часто употребляемыми функциями являются так называемые специальные функции математической физики: классические ортогональные полиномы (полиномы Якоби, Лагерра, Эрмита), цилиндрические, сферические и гипергеометрические. Теории этих функций и их приложениям посвящен целый ряд исследований. Гипергеометрические функции применяются в различных разделах математического анализа, в частности, при решении дифференциальных уравнений и при рассмотрении других специальных функций. С помощью гипергеометрических функций выражаются не только сферические, эллиптические, но и ряд других, в том числе и элементарные функции. В работе рассматриваются определение гипергеометрического ряда и гипергеометрической функции, доказывается, и выводятся некоторые элементарные свойства гипергеометрической функции, функциональные и специальные функциональные соотношения, представление различных функций через гипергеометрическую, вырожденная функция 1 и 2 рода, дифференциальное уравнение для вырожденной гипергеометрической функции и его интегралы, представление различных функций через вырожденные гипергеометрические функции.


1. Гипергеометрическое уравнение

1.1 Определение гипергеометрического ряда

Гипергеометрическим рядом называется степенной ряд вида

,

где z – комплексная переменная, , ,  - параметры, которые могут принимать любые вещественные или комплексные значения (0,-1,-2,…), и символ  обозначает величину = =1

Если  и  – нуль или целое отрицательное число, ряд обрывается на конечном числе членов, и сумма его представляет собой полином относительно z. За исключением этого случая, радиус сходимости гипергеометрического ряда равняется единице, в чем легко убедиться с помощью признака сходимости Даламбера: полагая

zk

имеем

=,

когда k, поэтому гипергеометрический ряд сходится при <1 и расходится при >1.


Сумма ряда

F(, , ,z) = , <1 (1.1)

называется гипергеометрической функцией.

Данное определение гипергеометрической функции пригодно лишь для значений z, принадлежащих кругу сходимости, однако в дальнейшем будет показано, что существует функция комплексного переменного z, регулярная в плоскости с разрезом (1, ) которая при <1 совпадает с F(, , ,z). Эта функция является аналитическим продолжением F(, , ,z) в разрезанную плоскость и обозначается тем же символом.

Чтобы выполнить аналитическое продолжение предположим сначала что R()>R()>0 и воспользуемся интегральным представлением

 (1.2)

k=0,1,2,..

Подставляя (1.2) в (1.1) находим

F(, , ,z) = = =,

причем законность изменения порядка интегрирования и суммирования вытекает из абсолютной сходимости.

Действительно, при R()>R() >0 и <1


=

= F(, R(),R(),)

На основании известного биноминального разложения

=(1-tz)-a(1.3)

0t1,<1

поэтому для F(, , ,z)     получается представление

F(, , ,z)=  (1.4)

R()>R() >0 и <1

Покажем, что интеграл в правой части последнего равенства сохраняет смысл и представляет регулярную функцию комплексного переменного z в плоскости с разрезом (1, ).

Для z принадлежащих области ,  (R – произвольно большое,  и  произвольно малые положительные числа), и 0 < t < 1 подынтегральное выражение есть регулярная функция z и непрерывная функция t ; поэтому достаточно показать что интеграл сходится равномерно в рассматриваемой области. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Функции сравнительного правоведения
Просмотров:92
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫКУРСОВАЯ РАБОТА на тему Функции сравнительного правоведения по дисциплине Сравнительное правоведениеКИЕВ 2011   СОДЕРЖАНИЕ Введение 1. Научная функц

Название:Функции государства в их многообразии и развитии
Просмотров:74
Описание: Содержание Введение Глава 1. Функции государства 1.1. Понятие и признаки функций государства 1.2 Классификация функций государства 1.3 Глобальные проблемы и функции государства 1.4. Эволюция функций госуд

Название:Булевы функции
Просмотров:194
Описание: 1.Основные понятия булевой алгебры Технические вопросы, связанные с составлением логических схем ЭВМ, можно решить с помощью математического аппарата, объектом исследования которого являются функции, приним

Название:Предмет и функции философии
Просмотров:137
Описание: Содержание Введение 1. Предмет философии. Место философии в системе наук и культуре 2. Основные разделы философии 3. Мировоззренческая, методологическая, рефлексивно–критическая и интегративная функция

Название:Характеристика структуры, понятия и принципов государственного аппарата и функций ветвей власти в системе механизма государства
Просмотров:88
Описание: Содержание Введение Глава I. Понятия государственного аппарата и механизма государства 1. Соотношение государственного аппарата с механизмом государства 2. Механизм государства как организация государс

 
     

Вечно с вами © MaterStudiorum.ru