MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Интеграл Лебега

Название:Интеграл Лебега
Просмотров:94
Раздел:Математика
Ссылка:Скачать(191 KB)
Описание: В этом определении предполагается, что все уn различны. Можно, однако, представить значение интеграла от простой функции в виде суммы произведений вида ck((Bk) и не предполагая, что все ck различны. Это позвол

Часть полного текста документа:

ВОЛОГОДСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИЧЕСКОГО АНАЛИЗА Курсовая работа на тему: "Интеграл Лебега" Выполнила: студентка 3мфА Сенченко Ю. В. Проверила: Панфилова Т. Л. Вологда 2000 Содержание. 1. Введение.
    
    1.1.Простые функции.
    
    1.2.ИнтегралЛебега от простых функций. 2. Определение интнгралаЛебега. 3. Основные свойства интеграла. 4. Предельный переход под знаком интеграла. 5. Сравнение интегралов Римана и Лебега. 6. Примеры. 7. Литература.
    1. Введение
    Понятие интеграла Римана, известное из элементарного курса анализа, применимо лишь к таким функциям, которые или непрерывны или имеют "не слишком много" точек разрыва. Для измеримых функций, которые могут быть разрывны всюду, где они определены (или же вообще могут быть заданы на абстрактном множестве, так что для них понятие непрерывности просто не имеет смысла), римановская конструкция интеграла становится непригодной. Вместе с тем для таких функций имеется весьма совершенное и гибкое понятие интеграла, введенное Лебегом.
    Основная идея построения интеграла Лебега состоит в том, что здесь, в отличие от интеграла Римана, точки х группируются не по признаку их близости на оси х, а по признаку близости значений функции в этих точках. Это сразу же позволяет распространить понятие интеграла на весьма широкий класс функций.
    Кроме того, интеграл Лебега определяется совершенно одинаково для функций, заданных на любых пространствах с мерой, в то время как интеграл Римана вводится сначала для функций одного переменного, а затем уже с соответствующими изменениями переносится на случай нескольких переменных. Для функций же на абстрактных пространствах с мерой интеграл Римана вообще не имеет смысла.
    Всюду, где не оговорено противное, будет рассматриваться некоторая полная ?-аддитивная мера ?, определенная на ?-алгебре множеств с единицей X. Все рассматриваемые множества А ? Х будут предполагаться измеримыми, а функции f(x) - определенными для x? Х и измеримыми.
    1.1. Простые функции.
    Определение 1. Функция f(x), определенная на некотором пространстве Х с заданной на нем мерой, называется простой, если она измерима и принимает не более, чем счетное число значений.
    Структура простых функций характеризуется следующей теоремой.
    Теорема 1. Функция f(x), принимающая не более чем счетное число различных значений
    y1, y2, ... , yn, ... , измерима в том и только том случае, если все множества
    An={x : ?(x)=yn} измеримы.
    Доказательство. Необходимость условия ясна, так как каждое An есть прообраз одноточечного множества {yn}, а всякое одноточечное множество является борелевским. Достаточность следует из того, что в условиях теоремы прообраз f-1(B) любого борелевского множества есть объединение не более чем счетного числа измеримых множеств An, т. е. измерим.
    Использование простых функций в построении интеграла Лебега будет основано на следующей теореме.
    Теорема 2. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Функции сравнительного правоведения
Просмотров:84
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫКУРСОВАЯ РАБОТА на тему Функции сравнительного правоведения по дисциплине Сравнительное правоведениеКИЕВ 2011   СОДЕРЖАНИЕ Введение 1. Научная функц

Название:Функции государства в их многообразии и развитии
Просмотров:69
Описание: Содержание Введение Глава 1. Функции государства 1.1. Понятие и признаки функций государства 1.2 Классификация функций государства 1.3 Глобальные проблемы и функции государства 1.4. Эволюция функций госуд

Название:Булевы функции
Просмотров:188
Описание: 1.Основные понятия булевой алгебры Технические вопросы, связанные с составлением логических схем ЭВМ, можно решить с помощью математического аппарата, объектом исследования которого являются функции, приним

Название:Предмет и функции философии
Просмотров:134
Описание: Содержание Введение 1. Предмет философии. Место философии в системе наук и культуре 2. Основные разделы философии 3. Мировоззренческая, методологическая, рефлексивно–критическая и интегративная функция

Название:Фонд обязательного медицинского страхования: структура и функции
Просмотров:252
Описание: ВВЕДЕНИЕ фонд обязательное медицинское страхование Обязательное медицинское страхование - составная часть системы социального страхования. Создание внебюджетных фондов (пенсионного, занятости, социальног

 
     

Вечно с вами © MaterStudiorum.ru