РЕФЕРАТ
Отчет о НИРС: 53 c., 28 рис., 5 источников
Объект исследования – архитектура современных микропроцессоров и вычислительных систем.
Цель работы – исследовать архитектуру современных микропроцессоров и вычислительных систем, а также сделать вывод о перспективах их развития.
В данной работе рассмотрено множество различных классификаций архитектур вычислительных систем по различным признакам, оценено нынешнее состояние исследований в области архитектуры процессоров, а также дан прогноз этих исследований и достижений на ближайшее время.
Основное внимание уделено вопросам классификации архитектур вычислительных систем, признакам, по которым эта классификация осуществляется, раскрытию понятий «микроархитектурный уровень» и «мультитредовые системы».
В качестве примера рассматриваются вычислительные системы таких производителей, как IBM, AMD, Sun Microsystems, CRAY и других.
СОДЕРЖАНИЕ
Введение
1 Классификации архитектур вычислительных систем
1.1 Классификация Флинна
1.2 Дополнения Ванга и Бриггса к классификации Флинна
1.3 Классификация Фенга
1.4 Классификация Шора
1.5 Классификация Хендлера
1.6 Классификация Хокни
1.7 Классификация Шнайдера
1.8 Классификация Джонсона
1.9 Классификация Базу
1.10 Классификация Кришнамарфи
1.11 Классификация Скилликорна
1.12 Классификация Дазгупты
1.13 Классификация Дункана
2 Организация компьютерных систем
2.1 Общие сведения
2.2 Устройство центрального процессора
2.3 Выполнение команд
2.4 RISCи CISC
2.5 Принципы разработки современных компьютеров
2.6 Параллелизм на уровне команд
2.7 Параллелизм на уровне процессоров
3 Эволюция микропроцессорных систем
3.1 Основные направления развития
3.2 Увеличение объема внутрикристальной памяти
3.3 Увеличение числа и состава функциональных устройств
3.4 Интеграция функций
3.5 Однокристальные мультискалярные и мультитредовые системы
3.6 Направление эволюции архитектуры микропроцессоров
Выводы
Список использованных источников
ВВЕДЕНИЕ
Стремительное развитие науки и проникновение человеческой мысли во все новые области вместе с решением поставленных прежде проблем постоянно порождает поток вопросов и ставит новые, как правило более сложные, задачи. Во времена первых компьютеров казалось, что увеличение их быстродействия в 100 раз позволит решить большинство проблем, однако гигафлопная производительность современных суперЭВМ сегодня является явно недостаточной для многих ученых. Электро- и гидродинамика, сейсморазведка и прогноз погоды, моделирование химических соединений, исследование виртуальной реальности - вот далеко не полный список областей науки, исследователи которых используют каждую возможность ускорить выполнение своих программ.
Наиболее перспективным и динамичным направлением увеличения скорости решения прикладных задач является широкое внедрение идей параллелизма в работу вычислительных систем. К настоящему времени спроектированы и опробованы сотни различных компьютеров, использующих в своей архитектуре тот или иной вид параллельной обработки данных. В научной литературе и технической документации можно найти более десятка различных названий, характеризующих лишь общие принципы функционирования параллельных машин: векторно-конвейерные, массивно-параллельные, компьютеры с широким командным словом, систолические массивы, гиперкубы, спецпроцессоры и мультипроцессоры, иерархические и кластерные компьютеры, dataflow, матричные ЭВМ и многие другие. ............