MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Исследование методов решения системы дифференциальных уравнений с постоянной матрицей

Название:Исследование методов решения системы дифференциальных уравнений с постоянной матрицей
Просмотров:75
Раздел:Математика
Ссылка:Скачать(120 KB)
Описание: Содержание   1. Введение 2. Постановка задачи 3. Нахождение собственных чисел и построение ФСР 4. Построение фундаментальной матрицы решений методом Эйлера 5. Нахождение приближённого решения в виде матр

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Содержание

 

1. Введение

2. Постановка задачи

3. Нахождение собственных чисел и построение ФСР 4. Построение фундаментальной матрицы решений методом Эйлера 5. Нахождение приближённого решения в виде матричного ряда

6. Построение общего решения матричным методом

7. Задача Коши для матричного метода

8. Решение неоднородной системы

Графики

Заключение

 


1. Введение

Рассмотрим систему линейных уравнений первого порядка, записанную в нормальной форме:

 (1)

где коэффициенты аij , i=1,2,…..,n, к=1,2,…,n, являются постоянными величинами;

yi=yi(t), i=1,2,…,n - неизвестные функции переменной t.

Если все bi(t) (i=1,2,…,n) положить равным нулю (bi(t)=0), то получится однородная система, соответствующая неоднородной системе (1).

Обозначая матрицу системы через А(х), а вектор  через  тогда систему (1) можем переписать в матричной форме

(1а)

Если , то получаем соответствующую систему однородных уравнений

. (2)

Всякая совокупность n функций

  


определенных и непрерывно дифференцируемых в интервале (a;b), называется решением системы (1) в этом интервале, если она обращает все уравнения системы (1) в тождества:

справедливые при всех значениях x из интервала (a, b). Общее решение неоднородной системы представляет собой сумму общего решения соответствующей однородной системы и частного решения неоднородной.

 


2. Постановка задачи

Цель работы: исследование методов решения системы дифференциальных уравнений с постоянной матрицей:

;;

Задание

1.         Найти собственные числа и построить фундаментальную систему решений (ФСР).

2.         Построить фундаментальную матрицу методом Эйлера.

3.         Найти приближенное решение в виде матричного ряда.

4.         Построить общее решение матричным методом. Исследовать зависимость Жордановой формы матрицы А от ее собственных чисел.

5.         Решить задачу Коши.

Начальные условия:

Вектор начальных условий: [1, 2, 3, 4]

t = 0

 
3. Нахождение собственных чисел и построение ФСР

Однородной линейной системой дифференциальных уравнений называется система уравнений вида:

 (3)

Если в матрице системы  все =const, то данная система называется системой с постоянными коэффициентами или с постоянной матрицей.

Фундаментальной системой решений однородной линейной системы уравнений называется базис линейного пространства решений a, т.е. n линейно независимых решений этой системы.

Для построения фундаментальной системы решений дифференциального уравнения необходимо найти собственные числа характеристического полинома, так как в зависимости от их вида (характеристические числа могут быть действительными разными, кратными, комплексными) строится фундаментальная система решений.

Для того чтобы эта система n линейных однородных уравнений с n неизвестными имела нетривиальное решение, необходимо и достаточно, чтобы определитель системы (вронскиан) был равен нулю:

 (4)


Из этого уравнения степени n определяется значение k, при которых система имеет нетривиальные решения. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Понятие системы и системного подхода к познанию
Просмотров:155
Описание: Содержание 1. Понятия "системный подход" и "система" 2. Логические основы системного подхода Список используемой литературы Введение В различных областях науки и техники широко используе

Название:Экономическое содержание системы расходов бюджета
Просмотров:70
Описание: Содержание Введение 1. ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ ФОРМИРОВАНИЯ РАСХОДОВ БЮДЖЕТА 1.1 Понятие и сущность бюджета 1.2 История возникновения бюджета 2 СОДЕРЖАНИЕ СИСТЕМЫ РАСХОДОВ БЮДЖЕТА 2.1 Классификация расход

Название:Принципы и сущность системы налогов и сборов в Российской Федерации
Просмотров:79
Описание: Содержание   Введение Сущность налогов и сборов Принципы построения системы налогов и сборов Классификация налогов и сборов А. Федеральные налоги и сборы Б. Региональные налоги и сборы В. Местные н

Название:Проектирование транспортной системы нового города
Просмотров:172
Описание: Введение В курсовой работе рассматривается вариант проектирования транспортной системы нового города. В качестве исходных параметров принимаются: численность населения города, уровень легковой и грузовой

Название:Правовое решение споров и вопросов усыновления
Просмотров:59
Описание: Министерство образования Российской Федерации Якутская государственная сельскохозяйственная академия Юридический факультет Кафедра гражданского и аграрного права КОНТРОЛЬНАЯ РАБОТА

 
     

Вечно с вами © MaterStudiorum.ru