MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Исследование решений одной системы интегро-дифференциальных уравнений, возникающей в моделях динамики популяций

Название:Исследование решений одной системы интегро-дифференциальных уравнений, возникающей в моделях динамики популяций
Просмотров:90
Раздел:Математика
Ссылка:Скачать(85 KB)
Описание:В настоящей работе приводятся результаты изучения вопросов существования, единственности, неотрицательности и ограниченности решений системы уравнений с начальным условием.

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Исследование решений одной системы интегро-дифференциальных уравнений, возникающей в моделях динамики популяций Н.В. Перцев, Омский государственный педагогический университет, кафедра математического анализа 1. Введение
    В работе автора [1] предложена математическая модель, описывающая динамику численности некоторых популяций с ограниченным временем жизни особей. Модель представляет собой систему интегро-дифференциальных уравнений
    
    с начальным условием
    
    где , а оператор имеет вид , .
    В настоящей работе приводятся результаты изучения вопросов существования, единственности, неотрицательности и ограниченности решений системы уравнений (1) с начальным условием (2). Рассмотрены также достаточные условия экспоненциальной устойчивости нулевого решения, которые применяются к исследованию вопроса о вырождении популяций. Для изучения поведения решений используются принцип сжимающих отображений, монотонный метод [2, с. 43] и свойства М - матриц [3, с. 132]. 2. Основные результаты
    Введем некоторые обозначения.Пусть - длина вектора , - норма матрицы A = ( ai j ), [4, с. 196], A+ - матрица, составленная из элементов , Rm+ - множество векторов с неотрицательными компонентами. Если , то запись u>0 означает, что ui>0 при всех . Неравенства между векторами из Rm понимаются как неравенства между их комнонентами. Для фиксированного T>0 под C+T будем понимать пространство неотрицательных непрерывных на отрезке [0,T] функций с нормой , где K>0 - некоторая константа, [2, с. 11]. В системе (1) , при под понимается правосторонняя производная. Далее, , , , , . Функции предполагаются непрерывными в своих областях определения.
    От системы уравнений (1) с начальным условием (2) перейдем к эквивалентной системе интегральных уравнений вида
    
    где (Fx)(t) =
    
    Здесь при , h(t) = 0 при , - отрезок интегрирования, . Примем в дальнейшем, что выполнено следующее предположение :
    H) элементы матрицы определены, непрерывны и ограничены, ; функции удовлетворяют условию Липшица , , , где D - некоторое выпуклое подмножество Rm+.
    Пусть M1 и M2 такие постоянные, что , , . Зададим матрицы A,B,Q по формулам : , где при и при , , Q = I - A B, I - единичная матрица. Положим
    (Lx)(t) =
    
    где . Тогда и для всех таких, что , верно неравенство .
    Теорема 1. Пусть предположение H) выполняется на множестве D = Rm+. Тогда система уравнений (3) имеет единственное непрерывное решение x=x(t), определенное на , и справедливы оценки , где .
    Теорема 2. Пусть предположение H) выполняется на некотором прямоугольнике и существует , такой, что . Тогда система уравнений (3) имеет единственное непрерывное, ограниченное решение x=x(t), определенное на , и справедливы оценки .
    Теорема 3. Пусть предположение H) выполняется либо на множестве D = Rm+, либо на некотором прямоугольнике D = D0. Пусть, кроме того, f(0) = 0 и Q является невырожденной М - матрицей. Тогда система уравнений (1) имеет нулевое решение x(t) = 0, которое является экспоненциально устойчивым, иначе для всех верно , где .
    Приведем краткую схему доказательства этих теорем. В условиях теоремы 1 будем искать функцию w(t), удовлетворяющую неравенствам . ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Правовое решение споров и вопросов усыновления
Просмотров:59
Описание: Министерство образования Российской Федерации Якутская государственная сельскохозяйственная академия Юридический факультет Кафедра гражданского и аграрного права КОНТРОЛЬНАЯ РАБОТА

Название:Разрешение конфликтной ситуации и конфликта
Просмотров:150
Описание: проблема конфликт руководитель примирение Реферат на тему: Разрешение конфликтной ситуации и конфликта Содержание 1. Разрешение конфликтной ситуации и конфликта 1.1 Разрешен

Название:Программирование системы уравнений
Просмотров:98
Описание: Содержание Введение 1 Постановка задачи 2 Решение системы уравнения методом Гаусса 3 Решение уравнения методами Ньютона, Хорд 4 Разработка блок схемы решения системы уравнения методом Гаусса 5 Разрабо

Название:Решение задач линейного программирования симплекс-методом
Просмотров:154
Описание: Содержание   Введение 1. Теоретический материал 1.1 Математическая формулировка задачи линейного программирования 1.2 Решение задач линейного программирования симплекс-методом 2. Постановка задачи 3.

Название:Системы линейных и дифференциальных уравнений
Просмотров:153
Описание: к/р № 1 1.  Решить матричные уравнения и сделать проверку.   Решение:   Найдём обратную матрицу . Обратной для матрицы А есть матрица , где  - определитель матрицы А, а элементы матрицы A*

 
     

Вечно с вами © MaterStudiorum.ru