MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Итерационные методы решения систем линейных алгебраических уравнений

Название:Итерационные методы решения систем линейных алгебраических уравнений
Просмотров:85
Раздел:Математика
Ссылка:Скачать(35 KB)
Описание: Введение Данная курсовая работа включает в себя три итерационных метода решения систем линейных алгебраических уравнений (СЛАУ): 1.         Метод Якоби (метод итераций). 2.     

Часть полного текста документа:

Введение

Данная курсовая работа включает в себя три итерационных метода решения систем линейных алгебраических уравнений (СЛАУ):

1.         Метод Якоби (метод итераций).

2.         Метод Холецкого.

3.         Метод верхней релаксации.

Также данная курсовая работа включает в себя: описание метода, применение метода к конкретной задаче (анализ), код программы решения вышеперечисленных методов на языке программирования Borland C++ Builder 6.



Описание метода

 

Метод решения задачи называют итерационным, если в результате получают бесконечную последовательность приближений к решению. Основное достоинство итерационных методов состоит в том, что точность искомого решения задается. Число итераций, которое необходимо выполнить для получения заданной точности , является основной оценкой качества метода. По этому числу проводится сравнение различных методов.

Главным недостатком этих методов является то, что вопрос сходимости итерационного процесса требует отдельного исследования. Примером обычных итерационных методов служат: метод итераций (метод Якоби), метод Зейделя, метод верхних релаксаций.

Начнем с метода итераций или как его ещё называют метода Якоби.

Существует сиcтема A·x = f (1), где матрица A = [aij] (i, j = 1, 2, …m) имеет обратную матрицу; x = (x1, x2, x3,… xm) – вектор неизвестных, f – вектор свободных членов. Систему (1) нужно преобразовать к следующему виду:  (2) i=1, 2,…, m, где , , при этом aii 0.

Значение суммы считается равным 0, если верхний предел суммирования меньше нижнего. Тогда при i=1 уравнение имеет вид: (3). В методе Якоби исходят из записи системы в виде (2), итерации при этом определяют следующим образом: , (n=0, 1, …, n0, i=1, 2, …, m) (4).

Начальные значения – (i=0, 1, …, m) задаются произвольно (в программе мы это проделываем, вводя функцию по генерации случайных чисел – «random»). Окончание итерационного процесса определяют либо заданием максимального числа итераций n0, либо следующим условием: , где >0. В качестве нулевого приближения в системе (4) примем .

Если последовательность приближений x1(0), x2(0),…, xm(0), x1(1), x2(1),…, xm(1),…, x1(k), x2(k),…, xm(k) имеет предел , , то этот предел является решением системы (2).

Достаточным условием сходимости решения системы (1) является то, что матрица A является матрицей с преобладающими диагональными элементами, то есть , i=1, 2, …, m.

Теперь рассмотрим второй итерационный метод – метод Зейделя, который является модификацией метода Якоби. Основная его идея заключается в том, что при вычислении (k+1) – го приближения неизвестной xi учитываются уже вычисленные ранее (k+1) – е приближения (x1 x2,…, xi-1).

Пусть дана приведенная линейная система:  (i = 1, 2, …n) (5). Выбираются произвольно начальные приближения корней x1(0), x2(0),…, xn(0), чтобы они в какой-то мере соответствовали неизвестным x1, x2, x3,…, xn.

Предполагается, что k-е приближение корней известно, тогда в соответствии с идеей метода строится (k+1) – е приближение по следующим формулам:



    
    
    


    

k=0,1,2,... (6)


    

    
      



Если выполняется достаточное условие сходимости для системы (5) – по строкам, то в методе Зейделя выгодно расположить уравнения (6) так, чтобы первое уравнение системы имело наименьшую сумму модулей коэффициентов: .

Теперь рассмотри 3 метод – метод верхних релаксаций.

Метод верхней релаксации – это есть метод Зейделя с заданным числовым параметром w.

Одним из наиболее распространенных одношаговых методов является метод верхних релаксаций, который имеет следующий вид  (7), где w заданный числовой параметр (0<w<2). ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Метод простых итераций с попеременно чередующимся шагом
Просмотров:88
Описание: Учреждение образования «Брестский государственный университет имени А.С. Пушкина» Кафедра информатики и прикладной математики Курсовая работа Метод простых итераций с поперем

 
     

Вечно с вами © MaterStudiorum.ru