К решению теоремы Ферма
Статья
посвящена исследованию доказательства теоремы Ферма в общем виде. Показано,
что кроме уравнения второй степени уравнения Ферма не содержат других
решений в целых числах. Предложено к рассмотрению 4 метода
доказательства теоремы при целых x, y. Проблему доказательства теоремы Ферма следует считать
закрытой.
Более 350 лет профессиональные математики и любители пытаются доказать теорему Ферма. Однако до настоящнго времени нет общепризнанного доказательства. Тем не менее, интерес к загадочной теореме не угасает и до настоящего времени остается высоким.
В настоящей статье предлагается к рассмотрению простой метод доказательства, основанный на разделении числового множества yn + xn =zn (1)
на два подмножества, из которых первое содержит только те x и y для всех показателей степени n, которые могут содержать решения уравнения (1) в целых числах x,y,z, а второе подмножество содержит только нецелые решения.
Отделить друг от друга упомянутые подмножества представляется возможным путем разложения уравнения (1) на составные части по биному Ньютона и составления на их основе уравнения с учетом принятых ограничений для поиска целых решений. Для этого представим уравнение (1) в виде, удобном для разложения :
(x - a)n + xn –(x+b)n = 0 (2)
Здесь: x – переменное число, а < x – целое число; n – целое число, показатель степени; b – целое или нецелое число, в зависимости от соотношения x,a, и n.
Сущность доказательства заключается в определении подходящих значений x,y,z для удовлетворения уравнений ( 1 ) и ( 2 ) методом последовательных приближений. Задача решается применительно к 450 сектору I квадранта в плоскостных координатах (x,y), т.к. из-за недостатка информации координата z равна 0. Полученные результаты могут быть распространены на остальные 7 секторов плоскости (x,y), определяя тем самым область распространения условий теоремы Ферма.
Итак, применяя формулу бинома Ньютона к выражению (2), получим:
(x–a)n + xn = 2xn - nxn-1 a + cn2 xn-2 a2 - cn3 xn-3 a3...... +an
(x+b)n = xn +nxn-1 b + cn2 xn-2 b2 + cn3 xn-3 b3 .......+bn
D = xn - nxn-1 (a+b) + cn2 xn-2 (a2-b2) - cn3 xn-3 (a3+b3)..+(an+bn) =0
(3)
Назовем выражение (3) основным уравнением в поисках целых решений уравнения (2). Подходящие значения x, y=(x–a), z=(x+b), удовлетворяющие уравнениям (1) и (2), будем искать при условии a=b=1. Обоснование принятых допущений (ограничений) изложено ниже. Полагая a = b , уравнение (3) преобразуем к виду:
xn - 2nxn-1 a - 2cn3 xn-3 a3 - 2cn5 xn-5 a5 - ... (an + an )=0 (4)
Обозначим через P(a,n) = 2cn3 xn-3 a3 + 2cn5 xn-5 a5 +... ( an + an ) - добавку после первых двух членов уравнения (4). ............