MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Кривые на плоскости

Название:Кривые на плоскости
Просмотров:151
Раздел:Математика
Ссылка:Скачать(92 KB)
Описание: Реферат по аналитической геометрии Тема: Кривые на плоскостиСтудентки группы ОАП 10-1: Петренко Лидии Линия - общая часть двух смежных областей поверхности. Движущаяся т

Часть полного текста документа:

Реферат по аналитической геометрии

Тема: Кривые на плоскости


Студентки группы ОАП 10-1:

Петренко Лидии


Линия - общая часть двух смежных областей поверхности. Движущаяся точка описывает при своем движении некоторую линию. В аналитической геометрии на плоскости линии выражаются уравнениями между координатами их точек. В прямоугольной системе координат линии разделяются в зависимости от вида уравнений. Если уравнение линии имеет вид: F (x; y)=0, где F (x; y)- многочлен n-ой степени относительно х, у то линия называется алгебраической линией ого n-го порядка. Линия 1-го порядка - прямая. Конические сечения относятся к линиям 2-го порядка и т.д.

Спирали

 

Спирали (франц., единственное число spirale, от лат. spira, греч. speira — виток), плоские кривые линии, бесчисленное множество раз обходящие некоторую точку, с каждым обходом приближаясь к ней или с каждым обходом удаляясь от неё.

Если выбрать точку за полюс полярной системы координат, то полярное уравнение спирали

r = f(j) таково, что f(j + 2p) > f(j) или f(j + 2p) < f(j) при всех j. В частности, спирали получаются, если f(j) — монотонно возрастающая или убывающая положительная функция.

Наиболее простой вид имеет уравнение архимедовой спирали: r = аj, изученной древнегреческим математиком Архимедом (3 в. до н. э.) в связи с задачами трисекции угла и квадратуры круга в сочинении "О спиралях".

Из других спиралей практическое значение имеет спираль Корню (или клотоида), применяемая при графическом решении некоторых задач дифракции. Параметрическое уравнение этой С. имеет вид:

.


Спираль Корню является идеальной переходной кривой для закругления железнодорожного пути, так как её радиус кривизны возрастает пропорционально длине дуги. Спиралями являются также эвольвенты замкнутых кривых, например эвольвента окружности.

Названия некоторым спиралям даны по сходству их полярных уравнений с уравнениями кривых в декартовых координатах, например:

·  параболическая спираль (а - r)2 = bj,

·  гиперболическая спираль: r = а/j.

·  Жезл: r2 = a/j

·  si-ci-cпираль, параметрические уравнения которой имеют вид:

,

[si (t) и ci (t) —интегральный синус и интегральный косинус]. Кривизна si-ci-cпирали изменяется с длиной дуги по закону показательной функции. Такие спирали применяют в качестве профиля для лекал.

Напоминает спираль кривая , называемая кохлеоидой. Она бесконечное множество раз проходит через полюс, причём каждый следующий завиток лежит в предыдущем.

Спирали встречаются также при рассмотрении особых точек в теории дифференциальных уравнений

Спиралями иногда называют также пространственные кривые, делающие бесконечно много оборотов вокруг некоторой оси, например винтовая линия.

Кардиоиды

 

Кардиоида (греч. καρδία — сердце, греч. εἶδος — вид) — плоская линия, которая описывается фиксированной точкой окружности, катящейся по неподвижной окружности с таким же радиусом. Получила своё название из-за схожести своих очертаний со стилизованным изображением сердца.

Кардиоида является частным случаем улитки Паскаля, эпициклоиды и синусоидальной спирали.

Так же можно сказать, что Кардиоида-это плоская кривая, описываемая точкой М окружности, которая извне касается неподвижной окружности того же радиуса и катится по ней без скольжения. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Разработка технологии сборки и монтажа ячейки трехкоординатного цифрового преобразователя перемещения
Просмотров:118
Описание:   Курсовая работа на тему: «Разработка технологии сборки и монтажа ячейки трёхкоординатного цифрового преобразователя перемещения» Введение Рассматриваемая ячейка в

Название:Обозначение осей координат и направлений перемещений исполнительных органов на схемах станков с числовым программным управлением (ЧПУ)
Просмотров:116
Описание: Обозначение осей координат и направлений перемещений исполнительных органов на схемах станков с числовым программным управлением (ЧПУ) Систему координат станка, выбранную в соответствии с рекомендациями ISO

Название:Окружности в треугольниках и четырехугольниках
Просмотров:298
Описание: Муниципальное общеобразовательное учреждение средняя общеобразовательная школа № 8 Реферат по геометрии на тему: Окружности в треугольниках и четырехугольниках Работу вы

Название:Система координат канви
Просмотров:90
Описание: Зміст Вступ Розділ 1. Теоретична частина 1.1 Компонент Image і деякі його властивості 1.2 Вивід зображень за допомогою пікселів 1.3 Збереження конфігурації в файлах .ini Розділ 2. Практична частина 2.1 Код гри

Название:Социологический анализ семьи в единстве структурных и динамических координат
Просмотров:61
Описание: Содержание 1. Социологический анализ семьи в единстве структурных и динамических координат. Семья как социальный институт и как социальная группа 2. Типология семейных структур и их основные разновидности.

 
     

Вечно с вами © MaterStudiorum.ru