MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Кривые третьего и четвертого порядка

Название:Кривые третьего и четвертого порядка
Просмотров:82
Раздел:Математика
Ссылка:Скачать(201 KB)
Описание: [pic] и прямая х= -h. Возьмем произвольную точку Q этой окружности и проведем прямую QA и прямую QN, перпендикулярную к оси абсцисс (рис. 2). Из точки пересечения R прямой QA с прямой х= -h проводим прямую RO

Часть полного текста документа:

Чувашский государственный университет им. И.Н. Ульянова Кафедра высшей математики КУРСОВАЯ РАБОТА на тему: "Кривые третьего и четвертого порядка" Выполнили: студенты группы С-12-00 Пинаев И.Н. Искаков Р.Р. Проверила: доцент кафедры высшей математики к.ф.-м.наук Самарина С.М. Чебоксары, 2002 Декартов лист 1. Особенности формы. Декартовым листом называется кривая 3-го порядка, уравнение которой в прямоугольной системе имеет вид (1) Иногда удобно пользоваться параметрическими уравнениями декартова листа, которые можно получить, полагая y=tx, присоединяя к этому равенству равенство (1) и решая полученную систему относительно х и у, в результате будем иметь:
    (2) откуда следует, что декартов лист является рациональной кривой. Заметим еще, что полярное уравнение декартова листа имеет вид (3) Координаты х и у входят в уравнение декартова листа симметрично, откуда следует, что кривая симметрична относительно биссектрисы у=х. Обычное исследование на особые точки приводит к заключению, что начало координат является узловой точкой декартова листа. Уравнения касательных к алгебраической кривой в ее особой точке, совпадающей с началом координат, можно получить, как известно, приравнивая нулю группу членов низшей степени из уравнения этой кривой. В нашем случае имеем З аху = 0, откуда получим х = 0 и у = 0 - искомые уравнения касательных в узловой точке. Эти касательные совпадают с координатными осями и, следовательно, в начале координат кривая пересекает сама себя под прямым углом. Легко видеть, что в первом координатном угле кривая делает петлю, которая пересекается с прямой у = х в точке Точки этой петли, в которых касательные параллельны координатным осям, имеют координаты
    и (cм. рис. 1) Для окончательного заключения о форме кривой следует еще найти асимптоту Заменяя в уравнении кривой у на приравняем нулю в полученном уравнении коэффициенты двух членов с высшими степенями х. Получим и b = - а. Таким образом, декартов лист имеет асимптоту у = - х - а; следовательно, во 2-м и 4-м координатных углах ветви декартова листа уходят в бесконечность. Рис. 1 2. Свойства. Согласно теореме Маклорена, если в трех точках алгебраической кривой 3-го порядка, лежащих на одной прямой, провести касательные к этой кривой, то точки их пересечения с кривой будут лежать также на прямой линии. Применительно к декартову листу эта теорема доказывается просто. Выведем с этой целью предварительно условие пребывания трех точек декартова листа, соответствующих значениям t1 , t2 и t3 параметра, на одной прямой. Если уравнение прямой имеет вид y=kx+b, то значения параметра, соответствующие точкам пересечения этой прямой с кривой, должны удовлетворять системе Система эта приводит к уравнению корни которого и будут искомыми значениями t1 , t2 и t3 параметра, откуда следует, что (4) Это равенство и является условием пребывания трех точек M1(t1 ), M2(t2), М3 (t3) декартова листа на одной прямой. Располагая этим условием, покажем справедливость теоремы Маклорена для декартово листа. Действительно, касательную в точке M1 (t1) можно рассматривать как прямую, которая пересекает декартов лист в двух совпадающих между собой точках, для которых t2=t1, и в третьей точке, для которой соответствующее значение параметра обозначим через T1. Условие (4) примет вид t12 T1= -1. Для касательных в точках М2 и M3 получим аналогичные соотношения t22 T2 = -1 и t32 T3 = -1. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Разработка технологии сборки и монтажа ячейки трехкоординатного цифрового преобразователя перемещения
Просмотров:128
Описание:   Курсовая работа на тему: «Разработка технологии сборки и монтажа ячейки трёхкоординатного цифрового преобразователя перемещения» Введение Рассматриваемая ячейка в

Название:Обозначение осей координат и направлений перемещений исполнительных органов на схемах станков с числовым программным управлением (ЧПУ)
Просмотров:127
Описание: Обозначение осей координат и направлений перемещений исполнительных органов на схемах станков с числовым программным управлением (ЧПУ) Систему координат станка, выбранную в соответствии с рекомендациями ISO

Название:Формула Бернулли, Пуассона. Коэффициент корреляции. Уравнение регрессии
Просмотров:173
Описание: Контрольная работа ТЕОРИЯ ВЕРОЯТНОСТЕЙ 1. В каждой из двух урн содержится 6 черных и 4 белых шаров. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из в

Название:Система координат канви
Просмотров:108
Описание: Зміст Вступ Розділ 1. Теоретична частина 1.1 Компонент Image і деякі його властивості 1.2 Вивід зображень за допомогою пікселів 1.3 Збереження конфігурації в файлах .ini Розділ 2. Практична частина 2.1 Код гри

Название:Социологический анализ семьи в единстве структурных и динамических координат
Просмотров:70
Описание: Содержание 1. Социологический анализ семьи в единстве структурных и динамических координат. Семья как социальный институт и как социальная группа 2. Типология семейных структур и их основные разновидности.

 
     

Вечно с вами © MaterStudiorum.ru