MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Кривые второго порядка. Квадратичные формы

Название:Кривые второго порядка. Квадратичные формы
Просмотров:130
Раздел:Математика
Ссылка:Скачать(29 KB)
Описание: Высшая математика Кривые второго порядка Квадратичные формы Содержание 1. Понятие квадратичной формы и способы ее записи 2. Знакоопределенность квадратичных форм 3. Критери

Часть полного текста документа:

Высшая математика Кривые второго порядка

Квадратичные формы


Содержание

1. Понятие квадратичной формы и способы ее записи

2. Знакоопределенность квадратичных форм

3. Критерии положительной и отрицательной определенностей

Литература


1. Понятие квадратичной формы и способы ее записи

 

Квадратичной формой j (х1, х2, …, xn) n действительных переменных х1, х2, …, xn называется сумма вида

,(1)

где aij – некоторые числа, называемые коэффициентами. Не ограничивая общности, можно считать, что aij = aji.

Квадратичная форма называется действительной, если aij Î ГR. Матрицей квадратичной формы называется матрица, составленная из ее коэффициентов. Квадратичной форме (1) соответствует единственная симметричная матрица

то есть АТ = А. Следовательно, квадратичная форма (1) может быть записана в матричном виде j (х) = хТАх, где

хТ = (х1 х2 … xn). (2)


И, наоборот, всякой симметричной матрице (2) соответствует единственная квадратичная форма с точностью до обозначения переменных.

Рангом квадратичной формы называют ранг ее матрицы. Квадратичная форма называется невырожденной, если невырожденной является ее матрица А. (напомним, что матрица А называется невырожденной, если ее определитель не равен нулю). В противном случае квадратичная форма является вырожденной.

Пример 1.

Записать матрицу квадратичной формы

j (х1, х2, x3) =  – 6х1х2 – 8х1х3 +  + 4х2х3 –

и найти ее ранг.

Решение.

Þ r(A) = 3 Þ

квадратичная форма невырождена.

2. Знакоопределенность квадратичных форм

 

Квадратичная форма (1) называется положительно определенной (или строго положительной), если j(х) > 0, для любого х = (х1, х2, …, xn), кроме х = (0, 0, …, 0).

Матрица А положительно определенной квадратичной формы j(х) также называется положительно определенной. Следовательно, положительно определенной квадратичной форме соответствует единственная положительно определенная матрица и наоборот.

Квадратичная форма (1) называется отрицательно определенной (или строго отрицательной), если j(х) < 0, для любого х = (х1, х2, …, xn), кроме х = (0, 0, …, 0).

Аналогично как и выше, матрица отрицательно определенной квадратичной формы также называется отрицательно определенной.

Следовательно, положительно (отрицательно) определенная квадратичная форма j(х) достигает минимального (максимального) значения j(х*) = 0 при х* = (0, 0, …, 0).

Отметим, что большая часть квадратичных форм не является знакоопределенными, то есть они не являются ни положительными, ни отрицательными. Такие квадратичные формы обращаются в 0 не только в начале системы координат, но и в других точках.

Пример 2.

Определить знакоопределенность следующих квадратичных форм.

1)

Þ

т. е. квадратичная форма  является положительно определенной.


2)

Þ

т. е. квадратичная форма  является отрицательно определенной.

3)

Þ

данная квадратичная форма не является знакоопределенной, так как она равна 0 во всех точках прямой х1 = –х2, а не только в начале системы координат.

Когда n > 2 требуются специальные критерии для проверки знакоопределенности квадратичной формы. Рассмотрим их.

Главными минорами квадратичной формы называются миноры:


то есть это миноры порядка 1, 2, …, n матрицы А, расположенные в левом верхнем углу, последний из них совпадает с определителем матрицы А.

3. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Социальная работа по формированию положительного отношения молодежи к здоровью
Просмотров:209
Описание: Введение   Актуальность проблемы охраны репродуктивного здоровья молодежи определяется кризисной демографической ситуацией в нашей республике, снижением репродуктивного потенциала молодых женщин, низк

Название:Порядок и условия исполнения наказания в виде лишения права занимать определенные должности или заниматься определенной деятельностью
Просмотров:157
Описание: Уголовно-исполнительное право Порядок и условия исполнения наказания в виде лишения права занимать определенные должности или заниматься определенной деятельностью Соде

Название:Города с преимущественным развитием определенной отрасли производства
Просмотров:83
Описание: Города с преимущественным развитием определенной отрасли производства Среди средних и малых городов Украины насчитываются десятки, которые сформировались и функционируют вокруг одного-двух градообразующ

Название:Разные направления и концепции изображения положительного героя в литературе XIX в
Просмотров:129
Описание: Оглавление Введение…………………………………………………………………..3                                                            Глава 1. Положительный герой в литературе 60-х г. XIX в……………8           

Название:Образ положительно прекрасного человека в творчестве Ф.М.Достоевского
Просмотров:84
Описание: Образ положительно прекрасного человека в творчестве Ф.М. Достоевского Мир спасет красота. Ф.М. Достоевский. Ф.М. Достоевский – один из величайших художников и мыслителей, который в течение всей своей

 
     

Вечно с вами © MaterStudiorum.ru