MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Коммуникации и связь -> Линейные метрические, нормированные и унитарные пространства

Название:Линейные метрические, нормированные и унитарные пространства
Просмотров:118
Раздел:Коммуникации и связь
Ссылка:Скачать(59 KB)
Описание: Линейные метрические, нормированные и унитарные пространства Введение При решении многих технических и прикладных задач радиотехники возникают вопросы: как объективно сравнить

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Линейные метрические, нормированные и унитарные пространства


Введение

При решении многих технических и прикладных задач радиотехники возникают вопросы: как объективно сравнить какой сигнал больше другого или как оценить "близость" двух сигналов.

Оказывается, что методы функционального анализа, создав стройную теорию сигналов, в основе которой лежит концепция сигнала как элемента специально сконструированного пространства, позволяют ответить на эти вопросы.

Введем обозначения. Если R – некоторое множество элементов, то f Î R означает, что f является элементом R;  или f Ï R означает, что f не принадлежит R.

Множество элементов х Î R, обладающих свойством А обозначается символом  например  - множество точек, принадлежащих полукругу х2 + y2 £ 1, x ³ 0.

Если M и N – два множества, то прямое произведение M х N этих множеств определяется следующим образом

то есть представляет собой множество всех упорядоченных пар (x, y), где x Î M, a y Î N.


1. Линейные метрические пространства

Множество R называется линейным пространством, если

1) в R определена операция "сложения", которая подчиняется всем правилам сложения: если f Î R, g Î R, то f + g Î R; в R имеется нулевой элемент 0 такой, что 0 +f = f для всех f Î R;

2) в R определена операция умножения элемента f Î R на числа a из множества К (a Î К, f Î R Þ a f Î R). Чаще всего К – множество всех действительных или комплексных чисел.

В дальнейшем будем рассматривать только линейные пространства.

Рассмотрим отображение Т, которое каждому элементу f Î R однозначно ставит в соответствие элемент h Î R*, где R* является также линейным пространством. Если R* = R, то Т отображает R в самого себя. Отображение Т называется оператором и отображение R в R* записывается в виде уравнения

T f = h (f Î R, h Î R*).

В частном случае, когда R* - пространство комплексных чисел, Т носит название функционала.

Пусть уравнение

T f = h

имеет единственное решение и каждому элементу h Î R* можно поставить в соответствие единственный элемент f Î R. Оператор, осуществляющий это соответствие, называется обратным по отношению к Т и обозначается Т-1. Таким образом можно записать


f = T-1 h.

Пример. Пусть имеется система линейных уравнений

Представим эту систему в матричном виде

Если ввести пространство матриц – столбцов R, то  где

и  Здесь оператор А – матрица размера n x n

Если матрица А невырождена, то обратная матрица и является обратным оператором:


Определение. Линейное пространство R называется метрическим, если каждой паре элементов х, y Î R ставится в соответствие вещественное число r (x, y) – расстояние между x и y – удовлетворяющее условиям:

1.  r (x, y) ³ 0, если r (x, y) = 0, то x = y;

2.  r (x, y) = r (y, x);

3.  r (x, y) £ r (x, z) + r (z, y) (неравенство треугольника).

Если введением расстояния пространство R превращено в метрическое пространство, то говорят, что в пространстве R введена метрика.

В радиотехнике элементами пространства являются сигналы (токи или напряжения), математическими моделями которых являются функции времени x(t), y(t), ... . Рассмотрим следующее пространство сигналов.

1. С[a, b] - пространство непрерывных на промежутке [a, b] функций с метрикой:

 y(t)

r(x,y)


2. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Основные элементы методологии государственной кадровой политики
Просмотров:97
Описание:   Основные элементы методологии государственной кадровой политики Содержание 1. Методологические основы государственной кадровой политики 1.1 Понятие и методологичес

Название:Понятие и особенности аграрных правоотношений, их элементы
Просмотров:79
Описание: Понятие и особенности аграрных правоотношений, их элементы   Нормы аграрного права, как и любые другие правовые нормы, вводят для того, чтобы определенным образом урегулировать общественные отношения суб

Название:Язык Paskal. Основные элементы языка. Структура программы
Просмотров:76
Описание: Содержание   Введение 1. Структура программы 2. Алфавит языка 3. Простейшие конструкции 4. Выражения 5. Типы данных 6. Операции Заключение Литература     Введение Тема реферата "Я

Название:Элементы теории вероятностей. Случайные события
Просмотров:150
Описание: Элементы теории вероятностей. Случайные события   Цель изучения - развить навыки составления и анализа математических моделей несложных задач прикладного характера, связанных со случайными явлениями, нау

Название:Элементы тензороного исчисления
Просмотров:135
Описание: Содержание Введение §1. Линейные преобразования §2. Индексные обозначения §3. Общее определение тензоров §4. Скалярное произведение и метрический тензор §5. Действия с тензорами §6. Поднятие и опускани

 
     

Вечно с вами © MaterStudiorum.ru