СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. ОБЩАЯ ХАРАКТЕРИСТИКА МАГНИТОУПРУГОГО ЭФФЕКТА
2. ИСПОЛЬЗОВАНИЕ МАГНИТОУПРУГОГО ЭФФЕКТА ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН
2.1 Измерение силы
2.2 Измерение крутящего момента
2.3 Измерение давления
ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА
ВВЕДЕНИЕ
Эффективное внедрение в промышленность систем автоматизации, наряду со специализацией производства, унификацией и нормализацией номенклатуры выпускаемой продукции и механизацией производства, опирается на высокую оснащенность предприятий специальными измерительными приборами для надежного контроля качества, эксплуатационных и физических свойств изделий. Развитие автоматизации промышленного производства идет по пути постепенного перехода от регулирования отдельных параметров к связанному регулирования множества параметров и в итоге к автоматизированным системам управления производством. Внедрение таких систем предполагает создание специализированных информационно - измерительных систем для сбора данных о ходе процесса и состоянии объектов с последующей централизованной обработкой поступающей информации вычислительными и управляющими машинами.
Общей чертой автоматизации производственных процессов является постоянно растущее значение измерений неэлектрических величин и повышение роли вычислительных устройств в замкнутой цепи управления.
Электрические приборы для измерения неэлектрических величин состоят из трех основных узлов: первичного преобразователя, измерительной схемы и устройства отображения. Достоинства приборов в целом, как правило, определяются характеристиками первичного преобразователя неэлектрической величины в электрическую. Чтобы полностью использовать достижения современной измерительной техники электрических величин, преобразователи должны обладать высокими метрологическими свойствами.
1. ОБЩАЯ ХАРАКТЕРИСТИКА МАГНИТОУПРУГОГО ЭФФЕКТА
Магнитоупругий эффект – это изменение намагниченности ферромагнитного тела при деформации. Он является термодинамически обратным магнитострикции, и его иногда называют обратным магнитострикционным эффектом.
При воздействии на кристаллы ферромагнетика механических усилий на кристаллографическую анизотропию накладывается магнитоупругая анизотропия, вызванная дополнительным магнитным взаимодействием атомов вследствие искажения атомной решетки кристалла.
Энергия магнитоупругой анизотропии зависит от вектора намагниченности насыщения в кристалле и создает дополнительные выгодные энергетические направления областей в решетке. Упругие напряжения, действующие на ферромагнетик, приводят к изменению ориентации магнитных моментов доменов в решетке (без изменения абсолютного значения вектора намагниченности насыщения). Это приводит к изменению намагниченности ферромагнетика. Магнитоупругая энергия непосредственно связана с магнитострикцией.
Устойчивые направления областей в ферромагнетике определяются минимальным значением магнитной энергии кристалла, включающей в себя три составляющие: 1) энергию магнитной анизотропии Wk; 2) магнитоупругую энергию Wd; 3) энергию внешнего магнитного поля WH.
В зависимости от вида упругой деформации намагниченность в различных ферромагнитных материалах изменяется различно. ............