MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Математическое программирование

Название:Математическое программирование
Просмотров:84
Раздел:Информатика, программирование
Ссылка:Скачать(98 KB)
Описание:Общая задача линейного программирования. Симплексная форма ЗЛП. Матричная форма симплекс-метода. Геометрическая интерпретация и графический метод решения.

Часть полного текста документа:

Математическое программирование
    
    Общая задача линейного программирования (ЗЛП):
    
    Здесь (1) называется системой ограничений , ее матрица имеет ранг r ? n, (2) - функцией цели (целевой функцией). Неотрицательное решение (х10, x20, ... , xn0) системы (1) называется допустимым решением (планом) ЗЛП. Допустимое решение называется оптимальным, если оно обращает целевую функцию (2) в min или max (оптимум).
    
    Симплексная форма ЗЛП. Для решения ЗЛП симплекс - методом необходимо ее привести к определенной (симплексной) форме:
    
    (2`) f+cr+1xr+1 + ... + csxs + ... + cnxn = b0 ? min
    
    Здесь считаем r < n (система имеет бесчисленное множество решений), случай r = n неинтересен: в этом случае система имеет единственное решение и если оно допустимое, то автоматически становится оптимальным.
    В системе (1`) неизвестные х1, х2, ... , хr называются базисными (каждое из них входит в одно и только одно уравнение с коэффициентом +1), остальные хr+1, ... , xn - свободными. Допустимое решение (1`) называется базисным (опорным планом), если все свободные неизвестные равны 0, а соответствующее ему значение целевой функции f(x10, ... , xr0,0, ... ,0) называется базисным.
    В силу важности особенностей симплексной формы выразим их и словами:
    а) система (1`) удовлетворяет условиям :
    все ограничения - в виде уравнений;
    все свободные члены неотрицательны, т.е. bi ? 0;
    имеет базисные неизвестные;
    б) целевая функция (2`) удовлетворяет условиям :
    содержит только свободные неизвестные;
    все члены перенесены влево, кроме свободного члена b0;
    обязательна минимизация (случай max сводится к min по формуле max f = - min(-f)).
    
    Матричная форма симплекс-метода. Симплексной форме ЗЛП соответствует симплекс - матрица :
    Заметим, что каждому базису (системе базисных неизвестных ) соответствует своя симплекс - матрица , базисное решение х = (b1,b2, ... ,br, 0, ... ,0) и базисное значение целевой функции f(b1,b2, ... ,br, 0, ... ,0) = b0 (см. Последний столбец !).
    
    Критерий оптимальности плана . Если в последней (целевой) строке симплекс-матрицы все элементы неположительны, без учета последнего b0, то соответствующий этой матрице план оптимален,
    т.е. сj ? 0 (j = r+1, n) => min f (b1, ... ,b2,0, ... ,0) = b0.
    Критерий отсутствия оптимальности. Если в симплекс-матрице имеется столбец (S-й), в котором последний элемент сs > 0, a все остальные элементы неположительны, то ЗЛП не имеет оптимального плана, т.е. сs > 0, ais ? 0 ( i= 1,r ) => min f = -?.
    Если в симплекс-матрице не выполняются оба критерия, то в поисках оптимума надо переходить к следующей матрице с помощью некоторого элемента ais > 0 и следующих преобразований (симплексных):
    все элементы i-й строки делим на элемент a+is;
    все элементы S-го столбца, кроме ais=1, заменяем нулями;
    все остальные элементы матрицы преобразуем по правилу прямоугольника, что схематично показано на фрагменте матрицы и дано в формулах:
    
    
    akl` = akbais - ailaks = akl - ailaks;
    ais ais
    
    bk` = bkais - biaks; cl` = clais - csail
    ais ais
    
    
    Определение. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Основные элементы методологии государственной кадровой политики
Просмотров:98
Описание:   Основные элементы методологии государственной кадровой политики Содержание 1. Методологические основы государственной кадровой политики 1.1 Понятие и методологичес

Название:Понятие и особенности аграрных правоотношений, их элементы
Просмотров:79
Описание: Понятие и особенности аграрных правоотношений, их элементы   Нормы аграрного права, как и любые другие правовые нормы, вводят для того, чтобы определенным образом урегулировать общественные отношения суб

Название:Язык Paskal. Основные элементы языка. Структура программы
Просмотров:76
Описание: Содержание   Введение 1. Структура программы 2. Алфавит языка 3. Простейшие конструкции 4. Выражения 5. Типы данных 6. Операции Заключение Литература     Введение Тема реферата "Я

Название:Решение задач линейного программирования симплекс-методом
Просмотров:154
Описание: Содержание   Введение 1. Теоретический материал 1.1 Математическая формулировка задачи линейного программирования 1.2 Решение задач линейного программирования симплекс-методом 2. Постановка задачи 3.

Название:Элементы теории вероятностей. Случайные события
Просмотров:150
Описание: Элементы теории вероятностей. Случайные события   Цель изучения - развить навыки составления и анализа математических моделей несложных задач прикладного характера, связанных со случайными явлениями, нау

 
     

Вечно с вами © MaterStudiorum.ru