MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Матожидание, дисперсия, мода и медиана

Название:Матожидание, дисперсия, мода и медиана
Просмотров:94
Раздел:Математика
Ссылка:Скачать(43 KB)
Описание: Математическое ожидание и его свойства.
Одной из важных числовых характеристик случайной величины является математическое ожидание. Введем понятие системы случайных величин.
Рассмотрим совокупность сл

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Математическое ожидание и его свойства. Одной из важных числовых характеристик случайной величины является математическое ожидание. Введем понятие системы случайных величин. Рассмотрим совокупность случайных величин , которые являются результатами одного и того же случайного эксперимента. Если - одно из возможных значений системы , то событию соответствует определенная вероятность удовлетворяющая аксиомам Колмогорова. Функция , определенная при любых возможных значениях случайных величин , называется совместным законом распределения. Эта функция позволяет вычислять вероятности любых событий из . В частности, совместный закон распределения случайных величин и , которые принимают значения из множества и , задается вероятностями . Расширим понятие независимости случайных событий и введем понятие независимых случайных величин. 1) Математическое ожидание постоянной величины равно самой постоянной, т.е. . Доказательство. Постоянную можно рассматривать как дискретную случайную величину, принимающую единственное значение с вероятностью 1. . 2) Постоянный множитель можно выносить за знак математического ожидания: . Доказательство. Пусть случайная величина задана законом распределения вероятностей: . . . . . . . . . . . . Очевидно, что случайная величина также является дискретной и принимает значения , , ... , , ... с прежними вероятностями , , ... , , ... т.е. закон распределения имеет вид . . . . . . . . . . . . Тогда по определению математического ожидания . 3) Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий: . Доказательство. Рассмотрим случайную величину и докажем, что Действительно, если и заданы рядами распределения . . . . . . . . . . . то, как было указано выше, случайная величина имеет следующий закон распределения: . . . . . . Тогда . Методом математической индукции можно доказать, что если это свойство выполняется для случайных величин, то оно выполняется и для случайных величин. 4) Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых: . Доказательство. Пусть заданы две случайные величины и рядами распределения (см. предыдущее свойство). В силу вышесказанного возможные значения случайной величины будут , , , , ... Их вероятности , , , ... , т.к. они определяются по теореме умножения вероятностей. Т.к. вероятность обозначает вероятность того, что события и наступают совместно, т.е. . Переходя к математическом ожиданию рассматриваемой суммы, имеем Предположим, что свойство 4) справедливо для случайной величины применяя в очередной раз метод математической индукции докажем, что это свойство справедливо и для случайных величин. Дисперсия случайной величины На практике часто требуется оценить рассеивание возможных значений случайной величины вокруг ее среднего значения. Отклонением случайной величины является разность между значением случайной величины и ее математическим ожиданием и обозначается . Хотя отклонение является величиной случайной, но использовать его для оценки разброса не удобно, т.к. его математическое ожидание всегда равно 0. Поэтому для характеристики рассеивания вводят другие характеристики. Определение. Дисперсией случайной величины называется математическое ожидание квадрата ее отклонения: . Из этого определения следует, что дисперсия случайной величины вычисляется по формуле для дискретной случайной величины для непрерывной случайной величины . (1) Справедлива следующая теорема. Теорема. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Абсолютные и относительные величины. Средние величины и показатели вариации
Просмотров:233
Описание: Тема 5. Абсолютные и относительные величины. Средние величины и показатели вариации   Оглавление:   1. Абсолютные величины 2. Относительные величины 3. Сущность средней в

Название:Середні величини та показники варіації у правовій статистиці
Просмотров:117
Описание: Міністерство освіти і науки України Курсова робота на тему: Середні величини та показники варіації у правовій статистиці Харків 2011 Зміст   Вступ

Название:Пределы. Сравнение бесконечно малых величин
Просмотров:147
Описание: Контрольная работа Дисциплина: Высшая математика Тема: Пределы. Сравнение бесконечно малых величин Содержание   1. Предел числовой последовательности 2. Предел функции 3. Второй замечательный преде

Название:Средние величины и показатели вариации
Просмотров:182
Описание: Содержание 1. Понятие о средних величинах 2. Виды средних 3. Показатели вариации 4. Методические указания и решение типовых задач Список использованной литературы 1. Понятие о средних величинах.

Название:Вычисление случайных величин
Просмотров:119
Описание: Задача №1. Двумерная случайная величина (X,Y) имеет равномерное распределение вероятностей в треугольной области ABC: где S – площадь треугольника ABC. Определить плотности случайных величин X и Y, ма

 
     

Вечно с вами © MaterStudiorum.ru