MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Педагогика -> Методика изучения функций в школьном курсе математики

Название:Методика изучения функций в школьном курсе математики
Просмотров:62
Раздел:Педагогика
Ссылка:Скачать(61 KB)
Описание: Министерство образования Республики Беларусь Учреждение образования "Гомельский государственный университет им. Ф. Скорины" Математический факультет Кафедра МПМ Методика изуче

Часть полного текста документа:

Министерство образования Республики Беларусь

Учреждение образования

"Гомельский государственный университет им. Ф. Скорины"

Математический факультет

Кафедра МПМ

Методика изучения функций в школьном курсе математики

Реферат

Исполнитель:

Студентка группы М-33 Грабовец А.Ю.

Научный руководитель:

Канд. физ-мат. наук, доцент Лебедева М.Т.

Гомель 2007


Содержание

Введение

1. Различные подходы к трактовке понятия функции в курсе математики в средней школе

2. Основные направления введения понятия функции в школьном курсе математики

3. Методика формирования понятий общих свойств функций

4. Методическая схема изучения функций. Изучение функций в классе функций

Заключение

Литература


Введение

Функциональная линия школьного курса математики – одна из ведущих, определяющая стиль изучения тем в курсах алгебры и начала анализа. Её особенность состоит в представлении возможности установления разнообразных связей в обучении.

В современном школьном курсе математики ведущим подходом считается генетический с добавлением элементов логического. Формирование понятий и представлений, методов и приёмов в составе функциональной линии в системе обучения строится так, чтобы внимание учащихся сосредотачивалось на:

1)         выделенных и достаточно четко разграниченных представлениях, связанных с функцией;

2)         установлении их взаимодействия при развёртывании учебного материала.


1. Различные подходы к трактовке понятия функции в курсе математики в средней школе

Задача. При каких значениях параметра а уравнение  имеет ровно четыре корня?

Строим графики функций  и в одной системе координат, воспринимая равенство как равенство значений выбранных функций.

Построим график  четыре точки пересечения получаем для . При  (координаты точки максимума (1,2)) получаем верхнее ограничение. Второй промежуток значений для : от точки минимума функции, т.е. . Основа решения – использование функциональных и графических представлений, а само решение – переход от исследования данного в уравнении к исследованию функции. При построении графика этой функции  с помощью элементарных преобразований графиков наиболее трудным является оценивание значения выражения . В качестве подсказки можно воспользоваться неравенством:

Показанный метод называется функционально-графическим моделированием. Освоение его и с формальной, и с прикладной стороны в значительной мере подчинено изучение всей функциональной линии курсов алгебры и начала анализа.

Различают две основные математические трактовки понятия функции:

1) генетическую;

2) логическую.

Основные понятия, используемые при генетической трактовке: переменная величина, функциональная зависимость переменных величин, формула (выражающая одну переменную через некоторую комбинацию других переменных), декартова система координат на плоскости. Достоинство такого подхода состоит в том, подчеркивая динамический характер понятия функциональной зависимости, выявляется модельный аспект понятия функции относительно изучения явлений природы. Например, общая схема применения функции для описания результатов опыта имеет вид:

1)провести эксперимент;

2)составить по результатам эксперимента таблицу значений связанных друг с другом величин;

3)построить по табличным данным график;

4)подобрать эмпирическим путём формулу для данной функции;

5)дать развёрнутую характеристику свойств функции;

6)истолковать установленные свойства функции на языке эксперимента.

Однако ограничительная черта в этом подходе в том, что переменная всегда неявно предполагается пробегающей непрерывный ряд числовых значений. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Функции сравнительного правоведения
Просмотров:89
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫКУРСОВАЯ РАБОТА на тему Функции сравнительного правоведения по дисциплине Сравнительное правоведениеКИЕВ 2011   СОДЕРЖАНИЕ Введение 1. Научная функц

Название:Функции государства в их многообразии и развитии
Просмотров:72
Описание: Содержание Введение Глава 1. Функции государства 1.1. Понятие и признаки функций государства 1.2 Классификация функций государства 1.3 Глобальные проблемы и функции государства 1.4. Эволюция функций госуд

Название:Булевы функции
Просмотров:191
Описание: 1.Основные понятия булевой алгебры Технические вопросы, связанные с составлением логических схем ЭВМ, можно решить с помощью математического аппарата, объектом исследования которого являются функции, приним

Название:Предмет и функции философии
Просмотров:135
Описание: Содержание Введение 1. Предмет философии. Место философии в системе наук и культуре 2. Основные разделы философии 3. Мировоззренческая, методологическая, рефлексивно–критическая и интегративная функция

Название:Осмысление понятия "дизайн" через историю его развития
Просмотров:119
Описание: Осмысление понятия «дизайн» через историю его развития дизайн прикладной искусство ремесло Знакомство с историей дизайна даст нам возможность через факты дизайнерской практики узнать какие задачи и цели ст

 
     

Вечно с вами © MaterStudiorum.ru