Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
Московский автомобильно-дорожный институт (ГТУ) МФ
Факультет «АТ»
Кафедра «О и БД»
КУРСОВАЯ РАБОТА
по предмету
«Прикладная Математика»
Выполнил студент 2ЭТ гр. Мусиев Г.М.
Проверил преподаватель Баламирзоев А.Г.
Махачкала 2008 г.
Оглавление
Введение
1. Решение нелинейных уравнений. Метод деления отрезка пополам. Метод касательных. Комбинированный метод хорд и касательных
2. Решение систем линейных алгебраических уравнений. Методом Крамера. Методом Гаусса. Метод Жордана Гаусса. Метод Зейделя
3. Математическая обработка результатов опыта. Аппроксимация функций. Полином Лагранжа. Метод наименьших квадратов
4. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера. Метод Рунге – Кутта
5. Практический раздел
Введение
В достаточно общем случае процесс решения прикладных задач состоит из следующих этапов:
1. постановка задачи и построение математической модели (этап моделирования);
2. выбор метода и разработка алгоритма (этап алгоритмизации) ;
3. запись алгоритма на языке, понятном ЭВМ (этап программирования);
4. отладка и исполнение программы на ЭВМ (этап реализации);
5. анализ полученных результатов (этап интерпретации).
Фабула практических задач связана с реальными объектами – производственными процессами и явлениями природы, физическими закономерностями, экономическими отношениями и т.п. Решение задач обычно начинается с описания исходных данных и целей на языке строго определенных математических понятий. Точную формулировку условий и целей решения называют математической постановкой задачи. Этап исследования и описания их с помощью математических терминов называется построением математической модели или моделированием. Построение математической модели является наиболее сложным этапом решения задачи. Математическая модель может иметь вид уравнения, системы уравнений или быть выраженной в форме иных, как угодно сложных, математических структур или соотношений самой различной природы. Математические модели, в частности могут быть непрерывными или дискретными, в зависимости от того, какими величинами – непрерывными или дискретными – они описаны.
Вслед за построением математической модели идет этап поиска и разработки алгоритма решения задачи который называется алгоритмизацией.
Особые трудности на этапе поиска алгоритма заключается в поиске методе решения задачи. Дело в том, что уже для достаточно простых моделей чаще всего не удается получить результат в аналитической форме. Пусть, к примеру, задача свелась к решению уравнения с одной переменной: x - tg x = 0 . При всей тривиальности этой задачи выразить корни уравнения путем аналитических преобразований не удается, и весь арсенал методов «точной» математики оказывается здесь беспомощным. В таких случаях приходится использовать приближенные математические методы, позволяющие получать удовлетворительные результаты. Основными методами решения подобных задач являются численные методы, при использовании которых результат получается путем вычислений. ............