Дисциплина: «Высшая математика»
 Тема: «Несобственные интегралы»
  1. Несобственные интегралы с бесконечными пределами
 При введении понятия определенного интеграла, а также при рассмотрении задач, связанных с ним, все время делалось предположение, что область интегрирования конечна, а интегрируемая функция на нем непрерывна. Если интервал интегрирования бесконечен или функция в этом интервале имеет точки разрыва, то введенное выше понятие определенного интеграла неприменимо. Однако существует целый ряд задач, когда возникает необходимость распространить понятие определенного интеграла на случаи бесконечных интервалов интегрирования и разрывных функций.
  Рассмотрим вначале случай интегралов с бесконечными пределами. Пусть функция  непрерывна на промежутке . Следовательно, можно вычислить любой определенный интеграл с верхним пределом . Величина этого интеграла будет меняться в процессе изменения , но его можно будет вычислить до тех пор, пока  конечное число. Как только верхний предел станет равным бесконечности, -ая интегральная сумма, приводящая в пределе к определенному интегралу, потеряет смысл. Действительно, в этом случае уже нельзя будет ни задать , ни вычислить . Иначе говоря, последняя частичная трапеция при записи -ой интегральной суммы будет всегда иметь бесконечно большое основание и ее площадь вычислить обычными методами не удастся. В этом случае выход из положения заключается в том, что  находится не на бесконечности, а стремится к ней.
 Определение 1. Если существует конечный предел , то этот предел называется несобственным интегралом с бесконечным пределом от функции  и обозначается .
 Итак, по определению . В этом и заключается метод вычисления таких интегралов. Очевидно, что поскольку данное вычисление связано с нахождением предела, то ответ может существовать или нет.
 Определение 2. Если в несобственном интеграле предел существует, то интеграл называется сходящимся, если предел не существует или равен бесконечности, то интеграл называется расходящимся.
 Очевидно, с геометрической точки зрения несобственный интеграл с бесконечными пределами равен площади неограниченной области, лежащей между осью , кривой  и прямой .
 Аналогичным образом определяются несобственные интегралы и для других бесконечных интервалов:
   Следует подчеркнуть, что интеграл  существует только тогда, когда существует каждый из интегралов  и .
 Из сказанного выше следует, что несобственный интеграл это не предел интегральной суммы, а предел определенного интеграла с переменным верхним пределом интегрирования.
 Рассмотрим пример вычисления несобственного интеграла с бесконечным пределом, который, кроме того, применяется и при решении других задач, о чем будет сказано в дальнейшем.
  Если , то , поэтому . Следовательно, в этом случае .
 Если , то , поэтому  и . Аналогично, если , то .
 Таким образом,  сходится, если  и расходится, если .
 Несобственные интегралы с бесконечными пределами имеют место, в частности, в физике при вычислении работы по перемещению материальной точки с массой  из бесконечности в точку  под действием силы притяжения. Эта работа называется потенциалом силы притяжения материальной точки  при .
  2.  ............