MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> О компьютерном моделировании случайных величин

Название:О компьютерном моделировании случайных величин
Просмотров:88
Раздел:Математика
Ссылка:Скачать(43 KB)
Описание: М.В. Кретов 1. Моделирование случайной величины,  распределенной по равномерному закону Непрерывная случайная величина  имеет равномерное распределение на отрезке , если ее функция распределения задается следую

Часть полного текста документа:

М.В. Кретов

1. Моделирование случайной величины,  распределенной по равномерному закону

Непрерывная случайная величина  имеет равномерное распределение на отрезке , если ее функция распределения задается следующей формулой:

,

Плотность распределения вероятностей при этом имеет вид:

Математическое ожидание и дисперсия случайной величины  соответственно равны [3]:

, .

Обозначим буквой  случайную величину с равномерным распределением на отрезке . Для этой случайной величины функция распределения и плотность распределения вероятностей соответственно имеют вид:

 ,

Если , то вероятность

Моделировать случайную величину  можно многими способами [1].

Мы рассмотрим метод псевдослучайных последовательностей, который наиболее просто реализуется в компьютере. Для получения псевдослучайной последовательности используем алгоритм, который называется методом середины квадратов [4]. Поясним его на примере. Возьмем некоторое число . Пусть  Возведем его в квадрат:  Выберем четыре средние цифры этого числа и положим  Затем возводим  в квадрат:  и снова выбираем четыре средние цифры. Получаем  Далее находим     и т. д. Последовательность чисел  принимают за последовательность значений случайной величины  имеющей равномерное распределение на отрезке . Для оценки степени приближения последовательности  к последовательности случайных чисел с равномерным распределением используют статистические критерии, например, аналогичные критерию, который используется в работе [2].

2. Моделирование последовательности независимых случайных испытаний

Пусть проводится последовательность  независимых испытаний. В результате каждого испытания может произойти одно из  несовместных событий  объединение которых совпадает с пространством элементарных событий . Известна вероятность появления каждого события , , которая не изменяется при переходе от одного испытания к другому. Очевидно, что .

Моделирование последовательности испытаний проводится следующим образом. Разделим отрезок  на  участков  длины которых соответственно равны  Получаем последовательность значений  случайной величины  Если , то считаем, что в -м испытании наступило событие , так как

.

3. Моделирование случайной величины дискретного типа

А. Общий алгоритм моделирования.

Если случайная величина  дискретная, то ее моделирование можно свести к моделированию независимых испытаний. В самом деле, пусть имеет место следующий ряд распределения:

Обозначим через  событие, состоящее в том, что случайная величина  примет значение , при этом . Тогда нахождение значения, принятого случайной величиной  в результате испытания, сводится к определению того, какое из событий  появится. Так как события  несовместны и вероятность появления каждого из них не изменяется от испытания к испытанию, то для определения последовательности значений, принятых случайной величиной  можно использовать алгоритм моделирования последовательности независимых испытаний.

Б. Моделирование случайной величины с биномиальным распределением.

Случайная величина  считается распределенной по биномиальному закону, если

где ; — вероятность появления некоторого события  в каждом отдельно взятом испытании;  — вероятность появления события  в  независимых испытаниях  раз.

Введем случайную величину  — число появлений события  в -ом испытании,  Для этой величины имеет место:

, . ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Абсолютные и относительные величины. Средние величины и показатели вариации
Просмотров:147
Описание: Тема 5. Абсолютные и относительные величины. Средние величины и показатели вариации   Оглавление:   1. Абсолютные величины 2. Относительные величины 3. Сущность средней в

Название:Середні величини та показники варіації у правовій статистиці
Просмотров:108
Описание: Міністерство освіти і науки України Курсова робота на тему: Середні величини та показники варіації у правовій статистиці Харків 2011 Зміст   Вступ

Название:Пределы. Сравнение бесконечно малых величин
Просмотров:136
Описание: Контрольная работа Дисциплина: Высшая математика Тема: Пределы. Сравнение бесконечно малых величин Содержание   1. Предел числовой последовательности 2. Предел функции 3. Второй замечательный преде

Название:Средние величины и показатели вариации
Просмотров:160
Описание: Содержание 1. Понятие о средних величинах 2. Виды средних 3. Показатели вариации 4. Методические указания и решение типовых задач Список использованной литературы 1. Понятие о средних величинах.

Название:Вычисление случайных величин
Просмотров:111
Описание: Задача №1. Двумерная случайная величина (X,Y) имеет равномерное распределение вероятностей в треугольной области ABC: где S – площадь треугольника ABC. Определить плотности случайных величин X и Y, ма

 
     

Вечно с вами © MaterStudiorum.ru