Часть полного текста документа:ОБЪЕКТЫ НЕЧИСЛОВОЙ ПРИРОДЫ. Статистика объектов нечисловой природы - это направление в математической статистике, в котором в качестве статистических данных (результатов наблюдений) рассматриваются объекты нечисловой природы. Так называют объекты, которые нецелесообразно описывать числами, в частности элементы нелинейных пространств. Примерами являются бинарные отношения (ранжировки, разбиения, толерантности и др.), результаты парных и множественных сравнений, множества, нечеткие множества, измерение в шкалах, отличных от абсолютных. Этот перечень примеров не претендует на законченность. Он складывался постепенно в соответствии с исследованиями в области статистики объектов нечисловой природы. Объекты нечисловой природы широко используются в теоретических и прикладных исследованиях по проблемам управления, в частности управления качеством продукции, в технических науках, медицине, социологии, экономике, психологии и т.д., а также практически во всех отраслях народного хозяйства. Это обосновывает целесообразность дальнейшего развития рассматриваемого математико-статистического аппарата. В журнале " Заводская лаборатория " опубликовано два обзора [1,2] и несколько десятков статей ([3-33] и др.) по различным вопросам статистики объектов нечисловой природы. Однако литературы, в которой бы разъяснялись основные понятия этого направления анализа статистических данных, явно не хватает. Данный обзор и посвящен первоначальному знакомству с основными видами объектов нечисловой природы. Основные понятия репрезентативной теории измерений Начнем с рассмотрения конкретного социологического исследования. Обсуждение можно вести в терминах экспертных оценок. Тогда вместо сравнения математики и физики n экспертов (а не выпускников школ) оценивают по конкурентоспособности на мировом рынке, например, две марки стали. Однако в настоящее время социологические исследования более привычны, чем экспертные. При изучении привлекательности различных профессий для выпускников новосибирских школ [34] был составлен список из 30 профессий. Опрашиваемых просили оценить каждую из этих профессий одним из баллов 1,2,...,10 по правилу: чем больше нравится, тем выше балл. Для получения социологических выводов необходимо было дать единую оценку привлекательности определенной профессии для совокупности выпускников школ. В качестве такой оценки в работе [34] использовалось среднее арифметическое баллов, выставленных профессии опрошенными школьниками. В частности, физика получила средний балл 7.69, а математика - 7.50. В соответствии с логикой [34], физика более предпочтительна, чем математика. Однако было отмечено [35], что этот вывод противоречит данным работы [36], согласно которым ленинградские школьники средних классов больше любят математику, чем физику. Обсудим одно из возможных объяснений этого противоречия, которое заключается в неадекватной методике обработки данных, применных в работе [34]. Дело в том, что баллы 1,2,...,10 введены исследователем-социологом, т.е. субъективно. Если одна профессия оценена в 10 баллов, а вторая - в 2, то из этого нельзя заключить, что первая ровно в 5 раз привлекательней другой. Другой коллектив социологов мог бы принять иную систему баллов, например 1,4,9,16,...,100. Естественно предположить , что упорядочивание профессий по привлекательности, присущее школьникам, не зависит от того, какой системой баллов им предложит пользоваться социолог. ............ |