Лабораторная работа № 2
 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ПРОЗРАЧНОЙ ЖИДКОСТИ ПО МЕТОДУ СТОКСА
  
 
  Цель работы: ознакомиться с методом определения коэффициента вязкости прозрачной жидкости методом движущегося в жидкости шарика.
 Оборудование: стеклянный цилиндр, с прозрачной жидкостью; секундомер; микрометр; масштабная линейка; шарики из свинца.
  
 Теория вопроса и метод выполнения работы
 Явления переноса объединяют группу процессов, связанных с неоднородностями плотности, температуры или скорости упорядоченного перемещения отдельных слоев вещества. К явлениям переноса относятся диффузия, внутреннее трение и теплопроводность.
 Явлением внутреннего трения (вязкости) называется появление сил трения между слоями газа или жидкости, движущимся, друг относительно друга, параллельно и с разными по величине скоростями. Слой, движущийся быстрее, действует с ускоряющей силой на более медленно движущийся соседний слой. Силы внутреннего трения, которые возникают при этом, направлены по касательной к поверхности соприкосновения слоев (рис. 1, 2).
 Величина силы внутреннего трения  между соседними слоями пропорциональна их площади  и градиенту скорости , то есть справедливо соотношение, полученное экспериментально Ньютоном
 .(1)
 Величина  называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости. В СИ  измеряется в .
 Входящая в (1) величина  показывает, как меняется скорость жидкости в пространстве при перемещении точки наблюдения в направлении, перпендикулярном слоям. Понятие градиента скорости иллюстрируется рис. 1, 2.
  Рис. 1. Постоянный градиент скорости
 На рисунке 1 показано распределение скоростей слоев жидкости между двумя параллельными пластинами, одна из которых неподвижна, а другая имеет скорость . Подобная ситуация возникает в прослойке смазки между движущимися деталями. В этом случае слои жидкости, непосредственно прилегающие к каждой из пластин, имеют одинаковую с ней скорость. Движущиеся слои частично увлекают за собой соседние. В результате в пространстве между пластинами скорость жидкости меняется по направлению  равномерно. Таким образом, здесь
 .
  Рис. 2. Переменный градиент скорости
 На рисунке 2 показано распределение скоростей жидкости около движущегося в ней вертикально вниз со скоростью  шарика.
 Предполагается, что скорость  мала, так что завихрения в жидкости не образуются. В этом случае жидкость, непосредственно прилегающая к поверхности шарика, имеет скорость . В это движение частично вовлекаются удаленные от шарика слои жидкости. При этом скорость наиболее быстро меняется по направлению  вблизи шарика.
 Наличие градиента скорости у поверхности тела указывает, что на него действует сила внутреннего трения, зависящая от коэффициента вязкости . Сама величина  определяется природой жидкости и обычно существенно зависит от ее температуры.
 Сила внутреннего трения и коэффициент вязкости жидкости может быть определен различными методами – по скорости истечения жидкости через калиброванное отверстие, по скорости движения тела в жидкости и т.д. В данной работе для определения  используется метод, предложенный Стоксом.
 Рассмотрим для примера равномерное движение маленького шарика радиуса  в жидкости.  ............