MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Промышленность, производство -> Оптимизационные модели принятия решений

Название:Оптимизационные модели принятия решений
Просмотров:170
Раздел:Промышленность, производство
Ссылка:Скачать(212 KB)
Описание:   ТЕМА ОПТИМИЗАЦИОННЫЕ МОДЕЛИ ПРИНЯТИЯ РЕШЕНИЙ ГЛАВА 1. Использование оптимизационных моделей при принятии решений Успешность решения подавляющего большинства экономи

Самые свежие новости со всего мира. Мы работаем для вас 24 часа в сутки.
www.24da.ru
Регистрация доменов RU, SU от 400 рублей. Прогрессивные скидки.
www.direg.ru

Часть полного текста документа:

  ТЕМА ОПТИМИЗАЦИОННЫЕ МОДЕЛИ ПРИНЯТИЯ РЕШЕНИЙ
ГЛАВА 1. Использование оптимизационных моделей при принятии решений

Успешность решения подавляющего большинства экономических задач зависит от наиболее эффективного способа использования ресурсов (денег, товаров, сырья, оборудования, рабочей силы и др.). Именно эффективностью использования, как правило, ограниченных, ресурсов определяется конечный результат деятельности любой экономической системы (фирмы, предприятия, отрасли).

Экономическая суть методов оптимизации заключается в том, что, исходя из наличия определенных ресурсов, выбирается такой способ их использования (распределения), при котором обеспечивается максимум (или минимум) интересующего ЛПР показателя.

Задачи нахождения значений параметров, обеспечивающих экстремум функции  при наличии ограничений, наложенных на аргументы (независимые переменные) , носят общее название задач математического программирования.

Трудности, возникающие при решении задач математического программирования, определяются, в частности:

·  видом функциональной зависимости критерия эффективности, называемого также целевой функцией, от независимых переменных;

·  размерностью задачи, то есть количеством независимых переменных;

·  видом и количеством ограничений, которым удовлетворяют независимые переменные.

Среди задач математического программирования самыми простыми и наиболее хорошо изученными являются так называемые задачи линейного программирования (линейной оптимизации). Для них характерно то, что целевая функция линейно зависит от , а также то, что ограничения, накладываемые на независимые переменные, имеют вид линейных равенств или неравенств относительно этих переменных.

Такие задачи часто встречаются на практике – например, при решении проблем, связанных с распределением ресурсов, планированием производства, организацией работы транспорта и т.д. Во многих случаях расходы и доходы линейно зависят от количества закупленных или утилизированных средств (например, суммарная стоимость партии товаров линейно зависит от количества закупленных единиц; оплата перевозок производится пропорционально весам перевозимых грузов и т.п.).

Задачи линейного программирования, естественно, не исчерпывают все возможные типы взаимосвязей экономических параметров. Более сложными для анализа и численного решения являются задачи нелинейного программирования (нелинейной оптимизации), характеризуемые нелинейной зависимостью целевой функции и (или) функций-ограничений от независимых переменных .

Отметим еще два типа задач математического программирования, имеющих широкую распространенность в практике принятия управленческих решений.

Динамическое программирование служит для выбора наилучшего плана выполнения многоэтапных действий. В общем виде постановка задачи динамического программирования сводится к следующему. Имеется некоторая управляемая операция (целенаправленное действие), распадающаяся (естественно или искусственно) на ряд шагов (этапов). На каждом этапе осуществляется распределение и перераспределение ресурсов (управление) с целью улучшения ее результата в целом. Задача динамического программирования – определить оптимальное управление на каждом шаге и, тем самым, оптимальное управление всей операцией в целом.

Следует отметить также задачи стохастического программирования. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Решение задач линейного программирования симплекс-методом
Просмотров:244
Описание: Содержание   Введение 1. Теоретический материал 1.1 Математическая формулировка задачи линейного программирования 1.2 Решение задач линейного программирования симплекс-методом 2. Постановка задачи 3.

Название:Линейно-функциональная структура управления
Просмотров:148
Описание: 1. Понятие и сущность линейно-функциональной структуры Механизм управления организации приводится в действия с помощью разработанной структуры управления. Линейно-функциональная - структура управления, в

Название:Использование среды MatLAB для решения линейной программы
Просмотров:245
Описание: СОДЕРЖАНИЕ Введение 1. Постановка задачи линейного программирования 1.1 Формы задачи линейного программирования 1.2 Переход к канонической форме 2. Симплекс-метод 2.1 Теоретические основы симплекс-метод

 
     

Вечно с вами © MaterStudiorum.ru

.