Задача 1
Задано величини напруги на вхідних затисках схеми й опору. Визначити струми у всіх вітках схеми (рис. 1.0).
Рис. 1.0
Вихідна схема
Дано:
U = 100 В; R1 = 10 Ом;
R2 = 20 Ом; R3 = 7 Ом;
R4 = 8 Ом; R5 = 10 Ом;
R6 = 20 Ом; R7= 10 Ом;
R8 = 5 Ом; R9 = 5 Ом.
Визначити: струми в вітках.
Рішення:
Рис. 1.1
Проставимо напрямки струмів у вітках від (+) до (-). Позначимо вузли а, в, с, d. Проставимо напрямки напруг на паралельних ділянках кола Uав, Ucd.
Схему перетворимо до еквівалентного опору. Опори R7, R8 і R9 з'єднані послідовно і еквівалентний опір цієї вітки дорівнює: R789 = R7 + R8 + R9 = 10 + 5 + 5 = 20 Ом (Рис. 1.1). Опори R6 і R789 з'єднані паралельно і їх еквівалентний опір: R6-9 = R6· R789/( R6 + R789)=20·20/(20+20)= 10 Ом (Рис. 1.2).
Опори R5 і R6-9 з'єднані паралельно і їх еквівалентний опір (опір паралельної ділянки кола cd): Rcd = R5· R6-9/( R5 + R6-9) = 10·10/(10+10) = 5 Ом (Рис. 1.3). R1 R1 R2 R3-9
Опори R3, Rcd і R4 з'єднані послідовно і їх еквівалентний опір:
R3-9 = R3 + Rcd + R4 = 7 + 5 + 8 = 20 Ом (Рис. 1.4).
Опори R2 і R3-9 з'єднані паралельно і їх еквівалентний опір (опір паралельної ділянки кола ав): Rав = R2· R3-9/( R2 + R3-9) = 20·20/(20+20) = =10 Ом (Рис. 1.5).
Еквівалентний опір усього кола (опори R1 і Rав з'єднані послідовно):
Rекв = R1 + Rав = 10 + 10 = 20 Ом (рис. 1.6).
Струми визначаємо за допомогою закону Ома, розглядаючи схеми в зворотному порядку.
Сила струму на вході кола:
I1 = U/Rекв = 100/20 = 5 А.
Напруга на паралельній ділянці ав:
Uав = I1·Rав = 5·10 = 50 В.
Сила струму: I2 = Uав/R2 = 50/20 = 2,5 A.
Сила струму: I3 = I4 = Uав/R3-9 = 50/20 = 2,5 А.
Напруга на паралельній ділянці cd:
Ucd = I3·Rcd = 2,5·5 = 12,5 В.
Сила струму: I5 = Ucd/R5 = 12,5/10 = 1,25 A.
Сила струму: I6 = Ucd/R6 = 12,5/20 = 0,625 A.
Сила струму: I7 = Ucd/R789 = 12,5/20 = 0,625 A.
Перевірка правильності рішення по першому закону Кірхгофа.
Вузол а: I1 – I2 – I3 = 0; 5 – 2,5 – 2,5 = 0.
Вузол c: I3 – I5 – I6 – I7 = 0; 2,5 – 1,25 – 0,625 – 0,625 = 0.
Задача 2
Дані всі ЕРС і опори в схемі (рис. 2.1). Потрібно:
1. Скласти рівняння Кірхгофа (не вирішуючи).
2. Перетворити пасивний трикутник опорів в еквівалентну зірку і визначити струми віток методами контурних струмів і двох вузлів.
3. Скласти баланс потужностей.
4. Побудувати потенційну діаграму для контуру, що містить обидві ЕРС.
Рис.2.1
Вихідна схема
Дано:
E1 = 60B,
E2 = 40 Ом,
R1 = 8 Oм,
R2 = 10 Oм,
R3 = 12 Oм,
R4 = 16 Oм,
R5 = R6 = R7 = 30 Oм
Рішення:
1. Довільно проставляємо в вітках напрямки струмів і вибираємо напрямки обходів обраних контурів.
Складаємо рівняння за законами Кірхгофа.
Перший закон.
Для вузла 1 I7 + I5 - I1 = 0.
Для вузла 2 I2 - I6 - I5 = 0.
Для вузла 3 I3 + I6 - I7 = 0.
Другий закон.
Для контуру А E1 + E2 = I1·R1 + I2·R2 + I5·R5.
Для контуру В E2 = I2·R2 – I3·(R3 + R4) + I6·R6.
Для контуру С 0 = I7·R7 – I5·R5 + I6·R6.
2. Перетворимо пасивний трикутник опорів в еквівалентну зірку (рис. 2.2).
Рис.2.2. Перетворення трикутника опорів у еквівалентну зірку
Так як опори трикутника однакові, то еквівалентні опори зірки (рис. 2.2) також однакові і рівні:
Рис.2.3. Розрахункова схема
Опори віток (рис.2.3) після перетворення трикутника в еквівалентну зірку рівні:
R1/ = R1 + R57 = 8 + 10 = 18 Ом;
R2/ = R2 + R56 = 10 + 10 = 20 Ом;
R3/ = R3 + R4 + R67 =
=12 + 16 + 10 = 38 Ом.
1. Визначимо струми по методу контурних струмів (рис. 2.3). Для цього складемо контурні рівняння.
E1 + E2 = J1·(R1/ + R2/ ) + J2· R2/.
E2 = J1·R2/ + J2·(R2/ + R3/ ).
Підставимо чисельні значення.
100 = J1·38 + J2·20.
40 = J1·20 + J2·58.
Контурні струми знаходимо за допомогою методу визначників.
J1 = ∆1/∆ = 5000/1804 = 2,77.
J2 = ∆2/∆ = - 480/1804 = - 0,266.
Визначимо струми в вітках.
I1 = J1 = 2,77 A; I2 = J1 + J2 = 2,77 – 0,266 = 2,504 A.
I3 = - J2 = - 0,266 A.
Знак мінус свідчить про те, що струм у третій вітці в дійсності тече в зворотному напрямку.
2. ............