MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Основные принципы решения транспортной задачи

Название:Основные принципы решения транспортной задачи
Просмотров:117
Раздел:Информатика, программирование
Ссылка:Скачать(43 KB)
Описание: Реферат В данной работе изложены основные принципы решения транспортной задачи, в частности ¾ задача о коммивояжере. В работе использовано 5 источников, она содержит 29 страниц, 2 приложения, программу, нап

Часть полного текста документа:

Реферат

В данной работе изложены основные принципы решения транспортной задачи, в частности ¾ задача о коммивояжере.

В работе использовано 5 источников, она содержит 29 страниц, 2 приложения, программу, написанную на языке Си.


Содержание

Реферат

Содержание

Введение

1.Постановка задачи о коммивояжере

2. Метод ветвей и границ

3. Использование верхних оценок

4. Решение с заданной точностью

Заключение

Список используемой литературы

Приложение 1

Приложение 2


Введение

Проблема оптимизации является в определенном смысле, пожалуй, самой острой проблемой современности. В любой сфере деятельности человек всегда ищет оптимальное решение.

Существует класс задач, которые не удовлетворяют принципу оптимальности, и, следовательно, для этих задач метод динамического программирования непосредственно использован быть не может. Их решение требует развития специальных способов последовательного анализа вариантов. В частности, к такому классу задач относится задача о коммивояжере (бродячем торговце).

Данная работа описывает нахождение оптимального решения задачи о коммивояжере, применяя метод ветвей и границ.


1.Постановка задачи о коммивояжере

Рассмотрим задачу о коммивояжере (бродячем торговце). Предположим, что бродячий торговец должен, покинув город, которому мы присвоим номер 1 (рис. 1), объехать еще N-1 городов и вернуться снова в город номер 1. В его распоряжении есть дороги, соединяющие эти города. Он должен выбрать свой маршрут - порядок посещения городов так, чтобы путь, который ему придется пройти, был как можно короче. Основное условие этой задачи состоит в том, что коммивояжер не имеет права возвращаться снова в тот город, в котором он однажды уже побывал. Это условие будем называть условием (a). Мы считаем, что расстояние между двумя городами - функция  - определено. Разумеется, функция  может означать не только расстояние, но, например, время или издержки в пути и т. д. Поэтому в общем случае , а функции  естественно приписать значение ¥. Длина l пути S определяется формулой:

.                          (1)

Сумма в выражении (1) распространена по всем индексам i и j, удовлетворяющим условию (a), т. е. условию, что каждый из индексов i и j входит в выражение (1) один и только один раз. Функция  является, таким образом, аддитивной - она представима в виде суммы слагаемых, однако сама задача - задача отыскания минимума l - в силу ограничения (a) не является аддитивной и не удовлетворяет принципу оптимальности.



Рис.1.

Рассмотрим плоскость t, х, где t - дискретный аргумент, принимающий значения

0, 1, 2, . . . , N, соответствующие этапам путешествия бродячего торговца. Значение t=0 соответствует его начальному положению в городе номер 1, t - 1 - переходу из города номер 1 в город, который он выбрал первым для посещения, и т. д., t = N означает последний этап его путешествия - возвращение в город номер 1. Аргумент х теперь также принимает дискретные значения 1, 2,. . . , N (рис. 2). Соединим точку (0,1) с точками (1,1), (1,2), ..., (,1N) и длинам отрезков, соединяющих эти точки, припишем значения . Далее точки (1, s) - узлы, лежащие на первой вертикали, мы соединим со всеми узлами второй вертикали, длинам отрезков мы припишем значения и т. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  
 
     

Вечно с вами © MaterStudiorum.ru