МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
"Гомельский государственный университет имени Франциска Скорины"
математический факультет
Кафедра алгебры и геометрии
Курсовая работа
"Отношения эквивалентности и толерантности и их свойства"
Гомель 2005
Введение
В обыденной речи мы часто говорим об одинаковости (о равенстве) каких-то объектов (предметов, множеств, абстрактных категорий), не заботясь о надлежащем уточнении смысла, который мы вкладываем в слово "одинаковый". В главе первой попробуем выявить и раскрыть понятие "одинаковости", определим термины "эквивалентность" и "отношение эквивалентности".
Не менее важной является ситуация, когда нам приходится устанавливать сходство объектов. Если одинаковость объектов означает их взаимозаменимость в некоторой ситуации, то сходство – это частичная взаимозаменимость, т.е. возможность взаимной замены с некоторыми (допустимыми в данной ситуации) потерями, с допустимым риском. Во второй главе попробуем раскрыть понятие "толерантности" на базе таких терминов, как "одинаковость" и "сходство" объектов.
А в третьей главе подробнее рассмотрим применение понятий отношений эквивалентности и толерантности в различных областях знаний и практики человека.
Реферат
Курсовая работа содержит: 41 страница, 3 источника, 1 приложение.
Ключевые слова: отношение эквивалентности, отношение толерантности, одинаковость, сходство, взаимозаменимость, классы эквивалентности, пространство толерантности, классы толерантности, предкласс, базис.
Объект исследования: отношения эквивалентности и толерантности.
Предмет исследования: свойства отношений эквивалентности и толерантности.
Цель работы: используя рекомендуемую литературу рассмотреть понятия отношений эквивалентности и толерантности; рассмотреть приложения этих понятий в различных областях знаний и практики человека.
Методы исследования: методы теории множеств и теории отношений.
Задачами курсовой работы являются: изучить свойства отношений эквивалентности и толерантности и их приложения в конкретных областях знаний.
1. Отношение эквивалентности
1.1 Определение и примеры
1.1.1 Определение
Систему непустых подмножеств множества мы будем называть разбиением этого множества, если
1) и
2) при .
Сами множества называются при этом классами данного разбиения.
1.1.2 Определение
Отношение на множестве называется эквивалентностью (или отношением эквивалентности), если существует разбиение множества такое, что соотношение выполняется тогда и только тогда, когда и принадлежат некоторому общему классу данного разбиения.
Пусть – разбиение множества . Определим, исходя из этого разбиения, отношение на : , если и принадлежат некоторому общему классу данного разбиения. Очевидно, отношение является эквивалентностью. Назовем отношением эквивалентности, соответствующим исходному разбиению.
Например, разбиение состоит из подмножеств множества , содержащих ровно по одному элементу. Соответствующее отношение эквивалентности есть отношение равенства . Наконец, если разбиение множества состоит из одного подмножества, совпадающего с самим , то соответствующее отношение эквивалентности есть полное отношение: любые два элемента являются эквивалентными.
Пустое отношение (на непустом множестве!) не является эквивалентностью.
Мы подошли к эквивалентности через понятие взаимозаменимости. ............