MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Овалы Кассини и пузыри в моделировании мягких оболочек

Название:Овалы Кассини и пузыри в моделировании мягких оболочек
Просмотров:130
Раздел:Математика
Ссылка:Скачать(356 KB)
Описание:Исследование овалов Кассини, как математической модели формообразования мягких оболочек. Влияния геометрических параметров мягкой оболочки на конфигурацию силовых линий напряженности сжатой рабочей среды.

Самые свежие новости со всего мира. Мы работаем для вас 24 часа в сутки.
www.24da.ru
Регистрация доменов RU, SU от 400 рублей. Прогрессивные скидки.
www.direg.ru

Часть полного текста документа:

Овалы Кассини и пузыри в моделировании мягких оболочек Шальнев Олег Васильевич. 1. 4
    В работе рассматриваются закономерности изменения конфигурации меридиана мягких оболочек, деформированных внешней нагрузкой в пределах как области бесскладчатости, так и в запредельных областях с помощью модельных поверхностей вращения овалов Кассини.
    Мягкие силовые оболочки, способные оказывать сопротивление действию внешней сжимающей нагрузки и совершению работы по перемещению поверхности оболочки, деформированной внешней нагрузкой, относятся к мягким домкратам. Характерной особенностью их является трансформация начальной геометрической формы в процессе перемещения под нагрузкой в диапазоне от складчатого (запредельного) состояния к бесскладчатому.
    Наряду с традиционным подходом к расчету мягких силовых оболочек известны модельные описания их формы специфичными кривыми (эластиками Эйлера), очерчивающими меридиан поверхности вращения наибольшего объема при его заданной длине / 5 /, а также с помощью дифференциальных уравнений, определяющих радиусы кривизны безызгибных оболочек вращения под действием равномерного давления / 13 /.
    Однако, применение разомкнутых кривых Эйлера для моделирования замкнутых поверхностей вращения приводит к необходимости введения граничных условий, частных расчетных схем, а использование модели, основанной на дифференциальных уравнениях имеет ограничения только действием в области бесскладчатости. Поэтому первым условием создания математической модели является ее замкнутость и непрерывность кривизны. Другим условием создания модели является обобщенность начальной формы мягких оболочек.
    При условии абсолютной эластичности материала наиболее рациональной формой является равнонапряженная сфера, или в общем случае овалоид (вытянутый или сплюснутый) равного давления, соотношение размеров которого соответствует условию бесскладчатости. Для запредельного состояния в качестве начальной может быть принята составная (эквипотенциальная) поверхность равного напряжения (пузырьковая модель), представляющая блок равнонапряженных, плотно упакованных упругих сфер / 17 /. Поэтому третьим условием создания модели является возможность приведения изменяемых геометрических форм мягких оболочек к общему уравнению.
    Таким условиям моделирования соответствует семейство овалов Кассини. Особенностью этих плоских кривых является их геометрическая аналогия с эквипотенциальными линиями электромагнитного силового поля, образованного двумя точечными зарядами. То есть, кривые Кассини очерчивают меридиан поверхности равного напряжения потенциального поля сил давления сжатой среды, заключенной в деформированную мягкую оболочку.
    Овалы Кассини /15/ при определенных значениях констант уравнения являются частным случаем спирических кривых Персея-алгебраических линий четвертого порядка, для которых оси координат служат осями симмерии.
    Линиями Кассини называются геометрические места точек (М), для которых произведение расстояний (F1M x F2M = d?), где (F1; F2) - фиксированные фокусы, (d) - постоянная. Уравнение, определяющее форму овала в декартовой системе координат , имеет вид (Рис. 25):
    (x? + y?)?- 2f (x? - y?) = d4 - f4, (34)
    где f = const - межфокусное расстояние;
    0 < d < ? - характерная константа овалов Кассини.
    В полярных координатах уравнение Кассини имеет вид:
    r?= f? cos 2j ± SQR( f4 cos( 2j)? + (d4 - f4)) . ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Характеристика основных оболочек Земли
Просмотров:229
Описание: Содержание Введение 1. Основные оболочки земли 2. Состав и физическое строение земли 3. Геотермический режим земли Заключение Список использованных источников Введение Геология - наука о строен

Название:Гипергенез и литогенез земной оболочки
Просмотров:216
Описание: Гипергенез (от греч. hyper - над, сверх, поверх и genesis - происхождение, образование * a. hypergenesis; н. Hypergenese; ф. hypergenese; и. hipergenesis) - процессы хим. и физ. преобразования минералов и г. п. в верх. частях земной коры и на её повер

Название:Теория оболочек
Просмотров:138
Описание: Введение. Основные определения Конструктивные формы современных машин и сооружений чрезвычайно разнообразны. Выбор формы детали, узла или сооружения определяется многими факторами: их назначением, условиям

 
     

Вечно с вами © MaterStudiorum.ru

.