MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Перетворення координат, операції масштабування в бібліотеці Opengl

Название:Перетворення координат, операції масштабування в бібліотеці Opengl
Просмотров:98
Раздел:Информатика, программирование
Ссылка:Скачать(103 KB)
Описание: МІНІСТЕРСТВО ОСВІТИ УКРАЇНИ Бердичівський політехнічний коледж КОНТРОЛЬНА РОБОТА з предмета “Комп’ютерна графіка” (варіант №8) Перетворення координат, операції масштаб

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

МІНІСТЕРСТВО ОСВІТИ УКРАЇНИ

Бердичівський політехнічний коледж

КОНТРОЛЬНА РОБОТА

з предмета “Комп’ютерна графіка”

(варіант №8)

Перетворення координат, операції масштабування

в бібліотеці Opengl

м. Бердичів 2007 р.


1. Перетворення координат: афінне перетворення на площині, тривідерне афінне перетворення

Спочатку розглянемо загальні питання перетворення координат. Нехай задана n-вимірна система координат у базисі (k1 ,k2, ..., kn), яка описує положення точки у просторі за допомог гою числових значень kі. У КГ найчастіше використовуються двовимірна (п = 2) та тривимірна (п = 3) системи координат.

Якщо задати іншу, N-вимірну, систему координат у базисі (т1, т2, ..., mN), і поставити задачу визначення координат у новій системі, знаючи координати в старій, то рішення (якщо воно існує) можна записати у такому вигляді:

де fi— функція перерахування i-ї координати, аргументами є координати у системі ki. Можна поставити й обернену задачу: по відомих координатах (m1 ,т2, .... mN), визначити координати (к1 ,к2, ..., кn). Рішення оберненої задачі запишемо так:

де Fi — функції оберненого перетворення.

У випадку, коли розмірності систем координат не збігаються (п N), здійснити однозначне перетворення координат найчастіше не вдається. Наприклад, за двовимірними екранними координатами не можна без додаткових умов однозначно визначити тривимірні координати об'єктів, що відображаються.

Якщо розмірності систем збігаються (n = N), то також можливі випадки, коли не можна однозначно вирішити пряму або обернену задачі. Перетворення координат класифікують:

• за системами координат — наприклад, перетворення з полярної системи у прямокутну;

• за видом функції перетворення .

За видом функцій перетворення розрізняють лінійні та нелінійні перетворення. Якщо

при усіх i= і, 2, ..., N функції fi — лінійні відносно аргументів (k1 ,k2, ..., kn), тобто

де aij — константи, то такі перетворення називаються лінійними, а при n = N— афінними. Якщо хоча б для одного i функція fi є нелінійною відносно (k1 ,k2, ..., kn), тоді перетворення координат у цілому є нелінійним. Наприклад, перетворення

нелінійне, оскільки є добуток ху у виразі для Y. Тим, хто цікавиться математичними аспектами, що відносяться до систем координат і перетворення систем координат, можна порекомендувати такі книги, як [15, 23].

Лінійні перетворення наглядно записуються в матричній формі:


Тут матриця коефіцієнтів (аіj) множиться на матрицю-стовпець (ki), й у результаті матимемо матрицю-стовпець (mi).

Ми й далі часто будемо використовувати множення матриць, тому зробимо невеличкий екскурс у матричну алгебру. Для двох матриць — матриці А розмірами (т*п) та В — (п*р):

матричним добутком є матриця С = АВ розмірами (т*р)

для якої елементи cij обраховуються за формулою  .

Правило обчислення елементів матриці С можна легко запам'ятати за назвою "рядок на стовпець". І дійсно, для обчислення будь-якого елемента cij необхідно помножити елементи і-го рядка матриці А на елементи j -го стовпця матриці В.


Добуток матриць визначається тільки для випадку, коли кількість стовпців матриці А дорівнює кількості рядків матриці В. Більш докладно з матрицями ви можете ознайомитися в математичній літературі, наприклад, у [5]. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Особенности входа в поворот многоосных автомобилей с различными схемами управляемых осей
Просмотров:156
Описание: Особенности входа в поворот многоосных автомобилей с различными схемами управляемых осей Значительную часть общего пробега автомобиля составляет движение по криволинейной траектории. При этом способность

Название:Методи перетворення комплексного креслення
Просмотров:159
Описание: МЕТОДИ ПЕРЕТВОРЕННЯ КОМПЛЕКСНОГО КРЕСЛЕННЯ. ЗМІСТ Вступ.. 2 1.Заміна площин проекцій.. 3 2. Плоскопаралельне переміщення.. 5 3.Обертання навколо ліній рівня.. 7 4. Косокутне допоміжне пр

Название:Разработка технологии сборки и монтажа ячейки трехкоординатного цифрового преобразователя перемещения
Просмотров:127
Описание:   Курсовая работа на тему: «Разработка технологии сборки и монтажа ячейки трёхкоординатного цифрового преобразователя перемещения» Введение Рассматриваемая ячейка в

Название:Інтегральні перетворення Лапласа
Просмотров:152
Описание: Вступ В багатьох задачах математичного аналізу розглядаються випадки, в яких кожна точка одного простору ставиться у відповідність деякій точці іншого (або того ж самого) простору. Відповідність між двома то

Название:Обозначение осей координат и направлений перемещений исполнительных органов на схемах станков с числовым программным управлением (ЧПУ)
Просмотров:126
Описание: Обозначение осей координат и направлений перемещений исполнительных органов на схемах станков с числовым программным управлением (ЧПУ) Систему координат станка, выбранную в соответствии с рекомендациями ISO

 
     

Вечно с вами © MaterStudiorum.ru