MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Полное исследование функций и построение их графиков

Название:Полное исследование функций и построение их графиков
Просмотров:75
Раздел:Математика
Ссылка:Скачать(95 KB)
Описание: Дисциплина: Высшая математика Тема: Полное исследование функций и построение их графиков. 1. Возрастание и убывание функции Решение различных задач из области математики, физики и техники приводит к устано

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:


Дисциплина: Высшая математика

Тема: Полное исследование функций и построение их графиков.



1. Возрастание и убывание функции

Решение различных задач из области математики, физики и техники приводит к установлению функциональной зависимости между участвующими в данном явлении переменными величинами. Если такую функциональную зависимость можно выразить аналитически, то есть в виде одной или нескольких формул, то появляется возможность исследовать ее средствами математического анализа. Имеется в виду возможность выяснения поведения функции при изменении той или иной переменной величины (где функция возрастает, где убывает, где достигает максимума и т.д.). Применение дифференциального исчисления к исследованию функции опирается на весьма простую связь, существующую между поведением функции и свойствами ее производной, прежде всего ее первой и второй производной.

Рассмотрим вначале, как можно находить интервалы возрастания или убывания функции, то есть интервалы ее монотонности. В п. 8.2 были даны определения монотонно убывающей и возрастающей функции. Исходя из этого, можно сформулировать простые теоремы, позволяющие связать значение первой производной данной функции с характером ее монотонности.

Теорема 1.1. Если функция , дифференцируемая на интервале , монотонно возрастает на этом интервале, то в любой его точке ; если она монотонно убывает, то в любой точке интервала .

Доказательство. Пусть функция  монотонно возрастет на , значит, исходя из определения 8.2.2, для любого достаточно малого  выполняется неравенство:  (рис. 1.1).


Рис. 1.1

Рассмотрим предел . Если , то , если , то . В обоих случаях выражение под знаком предела положительно, значит, и предел положителен, то есть , что и требовалось доказать. Аналогично доказывается и вторая часть теоремы, связанная с монотонным убыванием функции.

Теорема 1.2. Если функция  непрерывна на отрезке  и дифференцируема во всех его внутренних точках, и, кроме того,  для любого , то данная функция монотонно возрастает на ; если  для любого , то данная функция монотонно убывает на .

Доказательство. Возьмем  и , причем . По теореме Лагранжа (п. 14.2), . Но  и , значит, , то есть . Полученный результат указывает на монотонное возрастание функции, что и требовалось доказать. Аналогично доказывается вторая часть теоремы.


2. Экстремумы функции

При исследовании поведения функции особую роль играют точки, которые отделяют друг от друга интервалы монотонного возрастания от интервалов ее монотонного убывания.

Определение 2.1. Точка  называется точкой максимума функции , если для любого, сколь угодно малого , , а точка  называется точкой минимума, если .

Точки минимума и максимума имеют общее название точек экстремума. У кусочно-монотонной функции таких точек конечное число на конечном интервале (рис. 2.1).

Рис. 2.1

Теорема 2.1 (необходимое условие существования экстремума). Если дифференцируемая на интервале  функция имеет в точке  из этого интервала максимум, то ее производная в этой точке равна нулю. То же самое можно сказать и о точке минимума .

Доказательство этой теоремы следует из теоремы Ролля (п. 14.1), в которой было показано, что в точках минимума или максимума , и касательная, проведенная к графику функции в этих точках, параллельна оси .

Из теоремы 2.1 вытекает, что если функция  имеет производную во всех точках, то она может достигать экстремума в тех точках, где .

Однако данное условие не является достаточным, так как существуют функции, у которых указанное условие выполняется, но экстремума нет. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Функции сравнительного правоведения
Просмотров:79
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫКУРСОВАЯ РАБОТА на тему Функции сравнительного правоведения по дисциплине Сравнительное правоведениеКИЕВ 2011   СОДЕРЖАНИЕ Введение 1. Научная функц

Название:Функции государства в их многообразии и развитии
Просмотров:64
Описание: Содержание Введение Глава 1. Функции государства 1.1. Понятие и признаки функций государства 1.2 Классификация функций государства 1.3 Глобальные проблемы и функции государства 1.4. Эволюция функций госуд

Название:Булевы функции
Просмотров:188
Описание: 1.Основные понятия булевой алгебры Технические вопросы, связанные с составлением логических схем ЭВМ, можно решить с помощью математического аппарата, объектом исследования которого являются функции, приним

Название:Предмет и функции философии
Просмотров:133
Описание: Содержание Введение 1. Предмет философии. Место философии в системе наук и культуре 2. Основные разделы философии 3. Мировоззренческая, методологическая, рефлексивно–критическая и интегративная функция

Название:Фонд обязательного медицинского страхования: структура и функции
Просмотров:245
Описание: ВВЕДЕНИЕ фонд обязательное медицинское страхование Обязательное медицинское страхование - составная часть системы социального страхования. Создание внебюджетных фондов (пенсионного, занятости, социальног

 
     

Вечно с вами © MaterStudiorum.ru