MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Понятие эвристики в математике

Название:Понятие эвристики в математике
Просмотров:181
Раздел:Математика
Ссылка:Скачать(93 KB)
Описание: Содержание Введение. 3 1. Понятие эвристики и особенности применения эвристики в математике. 6 1.1. Понятие доказательства в математике. 6 1.2. Эвристика как метод научного познания. 10 1.3. Эвристический подход

Часть полного текста документа:

Содержание

Введение. 3

1. Понятие эвристики и особенности применения эвристики в математике. 6

1.1. Понятие доказательства в математике. 6

1.2. Эвристика как метод научного познания. 10

1.3. Эвристический подход к построении математических доказательств в рамках логического подхода. 19

2. Эвристические приемы построения математических доказательств. 23

2.1. Эвристический метод построения математических доказательств. 23

2.2. Особенности применения эвристического подхода при доказательстве теорем  28

Заключение. 39

Список литературы.. 42


Введение

Логическое доказательство математических построений известно еще с Древней Греции. Греческие математики пифагорейской школы уже в VI—V веках до нашей эры делали попытки расположить цепь математических доказательств в определенную последовательность, чтобы переход от одного понятия к другому не вызывал ни у кого никаких сомнений. Этот «дедуктивный» метод получил дальнейшее развитие у Эвклида, Архимеда и Апполония. Понятие доказательства у них уже ни в чем существенном не отличается от нашего. Математика и, в частности, геометрия, стала наукой лишь тогда, когда в ней начали систематически применять логические доказательства, когда ее положения стали выводить не только путем непосредственных измерений, но и при помощи умозаключений, когда те или иные ее положения начали устанавливать в общем виде.

Обобщенные приемы умственной деятельности делятся на две большие группы — приемы алгоритмического типа и эвристические. Остановимся сначала на характеристике приемов алгоритмического типа.

Это приемы рационального, правильного мышления, полностью соответствующего законам формальной логики. Точное следование предписаниям, даваемым такими приемами, обеспечивает безошибочное решение широкого класса задач, на который эти приемы непосредственно рассчитаны. Формирование приемов мыслительной деятельности алгоритмического типа, ориентирующих на формально-логический анализ задач, является необходимым, но не достаточным условием развития мышления. Необходимо оно, во-первых, потому, что содействует совершенствованию репродуктивного мышления, являющегося важным компонентом творческой деятельности (особенно на начальном и конечном этапах решения проблем). Во-вторых, эти приемы служат тем фондом знаний, из которых ученик может черпать « строительный материал» для создания, конструирования методов решения новых для него задач. Недостаточным формирование алгоритмических приемов является потому, что не соответствует специфике продуктивного мышления, не стимулирует интенсивное развитие именно этой стороны мыслительной деятельности.

Эвристические методы решения задач - это система принципов и правил, которые задают наиболее вероятностные стратегии и тактики деятельности решающего, стимулирующие его интуитивное мышление в процессе решения, генерирование новых идей и на этой основе существенно повышающие эффективность решения определенного класса задач.

Эвристические приемы непосредственно стимулируют поиск решения новых проблем, открытие новых проблем, открытие новых для субъекта знаний и тем самым соответствуют самой природе, специфике творческого мышления. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Исследование понятия доказательства в гражданском процессе
Просмотров:151
Описание: Введение Осуществление правосудия состоит в применении судом закона к установленным в ходе судебного разбирательства фактическим обстоятельствам, однако эти обстоятельства необходимо осмыслить, понять и

Название:Решение практических заданий по дискретной математике
Просмотров:149
Описание: Содержание Введение Задание 1 Представить с помощью кругов Эйлера множественное выражение Используя законы и свойства алгебры множеств, упростить заданное выражение Задание 2 Заданы множества корт

Название:Простое доказательство великой теоремы Ферма
Просмотров:276
Описание: ПРОСТОЕ ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА Файл: FERMA-UVar © Н.М. Козий, 2007 Авторские права защищены свидетельствами Украины № 22108 и № 27312 Великая теорема Ферма формулируетс

Название:Общий курс высшей математики
Просмотров:217
Описание: Академия труда и социальных отношений Курганский филиал Социально-экономический факультет КОНТРОЛЬНАЯ РАБОТА по дисциплине: «Общий курс высшей математики» Студент гр. ЗМб 1338

Название:Общее доказательство гипотезы Биля, великой теоремы Ферма и теоремы Пифагора
Просмотров:321
Описание: Файл: MENTOR © Н.М. Козий, 2007 Авторские права защищены свидетельствами Украины № 23145 и № 27312 ОБЩЕЕ ДОКАЗАТЕЛЬСТВО ГИПОТЕЗЫ БИЛЯ, ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА И ТЕОРЕМЫ ПИФАГОРА ДОКАЗАТЕЛЬСТВ

 
     

Вечно с вами © MaterStudiorum.ru