MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Промышленность, производство -> Построение эпюр нормальных и касательных напряжений

Название:Построение эпюр нормальных и касательных напряжений
Просмотров:60
Раздел:Промышленность, производство
Ссылка:Скачать(69 KB)
Описание: Контрольная работа Материал: сталь 40. n = 4, a = 1,4 м P = 1,7qa т, q = 3 т/м М0 = 2,3qa2 т·м Решение. 1.         Построение эпюр поперечных сил и изгибающих моментов Определим расчетную н

Часть полного текста документа:

Контрольная работа

Материал: сталь 40.

n = 4, a = 1,4 м

P = 1,7qa т, q = 3 т/м

М0 = 2,3qa2 т·м

Решение.


1.         Построение эпюр поперечных сил и изгибающих моментов

Определим расчетную нагрузку:

Рр = Р · n = 1,7 · 3 · 1,4 · 4 = 28,56 т

qp = q · n = 3 · 4 = 12 т/м

Мр = М0 · n = 2,3 · 3 · 1,42 · 4 = 54,1 т · м

Qp = qp · a = 12 · 1,4 = 16,8 т

Схему нагружения балки заменим ее моделью, в которой действующие на балку связи заменим силами.

Определим реакции опор. Составим следующие уравнения:

∑МА = 0

Qp · 0,5a + Mp – Pp · 2a + Qp · 2,5a + Pp · 3a – RE · 4a = 0

RE = (Qp · 3a + Mp + Pp · a) / 4a = (16,8 · 3 · 1,4 + 54,1 + 28,56 · 1,4) / 4 · 1,4 = 29,4 т

∑МЕ = 0

RА · 4a - Qp · 3,5a + Mp + Pp · 2a - Qp · 1,5a - Pp · a = 0

RА = (Qp · 5a - Mp - Pp · a) / 4a = (16,8 · 5 · 1,4 - 54,1 - 28,56 · 1,4) / 4 · 1,4 = 4,2 т

Проверка:

∑F = 0

RА - Qp + Pp - Qp - Pp + RE = 0

4,2 – 16,8 + 28,56 – 16,8 – 28,56 + 29,4 = 0 – равенство верно.

Построим эпюру поперечных сил методом характерных точек, ходом слева:

FAпр = RА = 4,2 т

FВлев = FAпр - qp · а = 4,2 – 12 · 1,4 = -12,6 т

FВпр = FВлев = -12,6 т

FСлев = FВпр = -12,6 т

FСпр = FСлев + Рр = -12,6 + 28,56 = 15,96 т

FDлев = FСпр - qp · а = 15,96 - 12 · 1,4 = -0,84 т

FDпр = FDлев - Рр = -0,84 – 28,56 = -29,4 т

FЕлев = FDпр = -29,4 т

Строим эпюру изгибающих моментов, методом характерных точек ходом слева (рис. 1). Правую часть до рассматриваемого сечения мысленно отбрасываем. Находим сумму моментов всех сил, действующих слева от сечения относительно рассматриваемой точки.

МА = 0

МВлев = RA · a – qp · a · 0,5a = 4,2 · 1,4 – 12 · 1,4 · 0,5 · 1,4 = -5,88 т · м

МВпр = RA · a – qp · a · 0,5a + Мр = 4,2 · 1,4 – 12 · 1,4 · 0,5 · 1,4 + 54,1 = 48,22 т · м

МС = RA · 2a – qp · a · 1,5a + Мр = 4,2 · 2 · 1,4 – 12 · 1,4 · 1,5 · 1,4 + 54,1 = 30,58 т · м

МD = RA · 3a – qp · a · 2,5a + Мр + Pp · a – qp · a · 0,5a =

= 4,2 · 3 · 1,4 – 12 · 1,4 · 3 · 1,4 + 54,1 +28,56 · 1,4 = 41,16 т · м

МE = 0


Рис. 1

Необходимо также найти моменты в сечениях К и L.

Прежде чем определить момент в сечении К, необходимо найти расстояние х = АК. Составим выражение для поперечной силы в этом сечении и приравняем его к нулю.

FK = RA - qp · x = 0

x = RA / qp = 4,2/12 = 0,35 м

Определим момент в точке К:

МК = RA · x – qp · х · 0,5х = 4,2 · 0,35 – 12 · 0,35 · 0,5 · 0,35 = 0,74 т · м

Аналогично определяем момент в точке L.


x1 = CL

FL = RA – qp · a +Pp – qp · x1 = 0

x1 = (RA – qp · a + Pp)/ qp = (4,2 – 12 · 1,4 + 28,56)/12 = 1,33 м

МL = RA (2a + x1) – qp · a (1,5a + x1) + MP + PP · x1 - qp · x1 · 0,5x1 =

= 4,2 (2·1,4 + 1,33) – 12 · 1,4(1,5 · 1,4 + 1,33) + 54,1 + 28,56 · 1,33– 12 · 1,33 · 1,33 · 0,5 =41,2 т · м

По найденным точкам строим эпюру изгибающих моментов (рис. 1).

2. Определение необходимого осевого момента сопротивления изгибу из условия прочности

Условие прочности на изгиб:

|σmax| = |Mmax| / Wтр ≤ [σ]

Из эпюры изгибающих моментов:

Mmax = 48,22 т · м = 48,22 · 104 Н · м – максимальный изгибающий момент.

[σ] = 650 МПа – допускаемое нормальное напряжение для стали 40.

Требуемый осевой момент сопротивления изгибу из условия прочности:

Wтр ≥ |Mmax| / [σ] = (48,22 · 104) / 650 · 106 = 0,074 · 10-2 м3

Исследуем поперечные сечения различных форм (двутавр, швеллер, прямоугольник, квадрат, круг, треугольник)


Круг:

Wкр = πd3 / 32 = Wтр

d =  =  = 0,2 м

Sкр = πd2 / 4 = (3,14 · 0,22) / 4 = 0,0314 м2 = 314 см2 – площадь поперечного сечения.

Квадрат:

Wк = b3 / 6 = Wтр

d =  =  = 0,16 м

Sк = b2 = 0,162 = 0,0256 м2 = 256 см2 – площадь поперечного сечения.

Прямоугольник:

Wп = ba2 / 6 = Wтр; a > b; возьмем a = 2b.

Wтр = 4b3 / 6; b =  =  = 0,1 м; a = 2 · 0,1 = 0,2 м

Sп = аb = 0,1 · 0,2 = 0,02 м2 = 200 см2 – площадь поперечного сечения.

Треугольник. При вычислении напряжения в вершине треугольника.

Wт = bh2 / 24 = Wтр; b – сторона треугольника, h – высота.

Возьмем: h = b /  


Wтр = b3 / 48; b =  =  = 0,33 м; h = 0,33 /  = 0,23 м

Sтр = 0,5hb = 0,5 · 0,33 · 0,23 = 0,038 м2 = 380 см2 – площадь поперечного сечения.

Швеллер.

По справочникам определим швеллер.

Берем швеллер №40. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Форма напряжения на выходе дифференцирующей, интегрирующей и распределительной RC-цепи
Просмотров:130
Описание: Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Контрольная работа по курсу "Основы ради

Название:Меры пресечения в Российском уголовном процессе
Просмотров:305
Описание: Институт международного права и экономики имени А.С. Грибоедова Юридический факультет (заочная форма обучения) 3 курс, группа 6Ю-1-05 Контрольная работа По дисциплине: «Уголовный процесс» Н

Название:Расчет отклонения напряжения на зажимах наиболее удаленных от источника нагрузки. Доза Фликера
Просмотров:169
Описание: Министерство образования и науки Украины Приазовский государственный технический университет   Контрольная работа по предмету: «Качество эл. энергии»

Название:Расчет балки таврового сечения по двум группам предельных состояний
Просмотров:241
Описание: КОНТРОЛЬНАЯ РАБОТА «Расчет балки таврового сечения по двум группам предельных состояний» Задание и исходные данные 1.  Рассчитать арматуру тавровой балки; 2.  Рассчита

Название:Применение меры пресечения в виде заключения под стражу
Просмотров:64
Описание: Содержание   Введение 1.  Особенности и порядок применения меры пресечения в виде заключения под стражу в отношении несовершеннолетних подозреваемых, обвиняемых Заключение Библиография В

 
     

Вечно с вами © MaterStudiorum.ru