MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Информатика, программирование -> Построение циклических кодов

Название:Построение циклических кодов
Просмотров:78
Раздел:Информатика, программирование
Ссылка:Скачать(8 KB)
Описание:Циклический код для передачи 31 разрядной кодовой комбинации с исправлением однократной ошибки. Операции над циклическими кодами. Разработка текста программы.

Часть полного текста документа:

Построение циклических кодов
    
    § 1 Введение
    
    Код ,в котором кодовая комбинация, полученная путем циклического сдвига разрешенной кодовой комбинации является также разрешенной кодовой комбинацией называется циклическим ( полиномиальным, кодом с циклическими избыточными проверками-ЦИП).
    Сдвиг осуществляется справа налево, при этом крайний левый символ переносится в конец комбинации.
    Циклический код относится к линейным, блочным, корректирующим, равномерным кодам.
    В циклических кодах кодовые комбинации представляются в виде многочленов, что позволяет свести действия над кодовыми комбинациями к действием над многочленами (используя аппарат полиномиальной алгебры).
    Циклические коды являются разновидностью систематических кодов и поэтому обладают всеми их свойствами. Первоначально они были созданы для упрощения схем кодирования и декодирования. Их эффективность при обнаружении и исправлении ошибок обеспечила им широкое применение на практике.
    Циклические коды используются в ЭВМ при последовательной передаче данных .
    
    ( 2 Постановка задачи
    
    Построить циклический код для передачи 31 разрядной кодовой комбинации с исправлением однократной ошибки ( n=31 ,s=1) двумя
    способами.
    Показать процесс обнаружения и исправления однократной ошибки в передаваемой кодовой комбинации. Составить программу, реализующую алгоритм кодирования, декодирования и исправления ошибки при передаче данных с использованием циклического кода.
    
    ( 3 Операции над циклическими кодами
    1. Сдвиг справа налево осуществляется путем умножения полинома на x:
    G(x)=x4+x2+1 ? 0010101;
    G(x)?x=x5+x3+x ? 0101010.
    2. Операции сложения и вычитания выполняются по модулю 2 .
    Они являются эквивалентными и ассоциативными :
    G1(x)+G2(x)=>G3(x);
    G1(x) -G2(x)=>G3(x);
    G2(x)+G1(x)=>G3(x);
    Пример:
    G1(x)= x5 +x3+x;
    G2(x)=x4 +x3 +1;
    G3(x)=G1(x) ? G2(x) = x5 +x4+x+1.
    3. Операция деления является обычным делением многочленов, только вместо вычитания используется сложеное по модулю 2 :
    
    G1(x)=x6+x4+x3 ;
    G2(x)=x3+x2+1 .
    
    ( 4 Принцип построения циклических кодов
    
    Идея построения циклических кодов базируется на использовании неприводимых многочленов. Неприводимым называется многочлен, который не может быть представлен в виде произведения многочленов низших степеней ,т.е. такой многочлен делиться только на самого себя или на единицу и не делиться ни на какой другой многочлен. На такой многочлен делиться без остатка двучлен xn+1.Неприводимые многочлены в теории циклических кодов играют роль образующих полиномов.
    Чтобы понять принцип построения циклического кода, умножаем комбинацию простого k-значного кода Q(x) на одночлен xr ,а затем делим на образующий полином P(x) , степень которого равна r. В результате умножения Q(x) на xr степень каждого одночлена, входящего в Q(x), повышается на r. При делении произведения xrQ(x) на образующий полином получается частное C(x) такой же степени, как и Q(x).
    Частное C(x) имеет такую же степень, как и кодовая комбинация Q(x) простого кода, поэтому C(x) является кодовой комбинацией этого же простого k-значного кода. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчислень
Просмотров:253
Описание: Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчислень Ефективний шлях багаторазового зведення за модулем – використання методу Монтгомері, який було запропоно

Название:Многочлены Лежандра, Чебышева и Лапласа
Просмотров:236
Описание: СОДЕРЖАНИЕ   Введение 1.  Многочлены Лежандра 2.  Многочлены Чебышева 3.  Преобразование Лапласа 4.  Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутк

Название:Ортогональные полиномы и кривые распределения вероятностей
Просмотров:131
Описание: Санкт-Петербургский государственный университет Факультет прикладной математики – процессов управления Кафедра математического моделирования энергетических систем Карпова Наталия А

Название:Полиномы Чебышева
Просмотров:129
Описание: Содержание Введение Интерполяция многочленами Методы интерполяции Лагранжа и Ньютона Сплайн-аппроксимация Метод наименьших квадратов Полиномы Чебышева Практическое задание Введение До

Название:Построение порождающего полинома циклического кода по его корням (степеням корней)
Просмотров:159
Описание: Оглавление Предисловие 1. Краткие теоретические сведения 1.1 Полиномиальное представление двоичных чисел 1.2 Циклический код 1.3 Поле 1.4 Поля Галуа 1.4.1 Примитивный элемент поля и циклическая группа 1.4

 
     

Вечно с вами © MaterStudiorum.ru